No Arabic abstract
We investigate the dynamics of thermal Casimir interactions between plates described within a living conductor model, with embedded mobile anions and cations, whose density field obeys a stochastic partial differential equation which can be derived starting from the Langevin equations of the individual particles. This model describes the thermal Casimir interaction in the same way that the fluctuating dipole model describes van der Waals interactions. The model is analytically solved in a Debye-Huckel-like approximation. We identify several limiting dynamical regimes where the time dependence of the thermal Casimir interactions can be obtained explicitly. Most notably we find a regime with diffusive scaling, even though the charges are confined to the plates and do not diffuse into the intervening space, which makes the diffusive scaling difficult to anticipate and quite unexpected on physical grounds.
We study the thermal fluctuation induced interactions between two surfaces containing Brownian charges which are held at different temperatures. Using a dynamical form of Debye-Huckel theory implemented within the stochastic equation for the density of mobile Brownian charges, we derive expressions for the average force between the two surfaces as well as its variance. The latter is found both for the normal, of finite mean, as well as the lateral force, of zero mean, between the surfaces.
The zero-temperature Casimir-Lifshitz force between two plates moving parallel to each other at arbitrary constant speed was found in [New J. Phys. 11, 033035 (2009)]. The solution is here generalized to the case where the plates are at different temperatures. The Casimir-Lifshitz force is obtained by calculating the electromagnetic stress tensor, using the method employed by Antezza et al. [Phys. Rev. A 77, 022901 (2008)] for non-moving plates at different temperatures. The perpendicular force on the plates has contributions from the quantum vacuum and from the thermal radiation; both of these contributions are influenced by the motion. In addition to the perpendicular force, thermal radiation from the moving plates gives rise to a lateral component of the Casimir-Lifshitz force, an effect with no quantum-vacuum contribution. The zero-temperature results are reproduced, in particular the non-existence of a quantum-vacuum friction between the plates.
We calculate the Casimir force between two parallel ideal metal plates when there is an intervening chiral medium present. Making use of methods of quantum statistical mechanics we show how the force can be found in a simple and compact way. The expression for the force is in agreement with that obtained recently by Q.-D. Jiang and F. Wilczek [Phys. Rev. B {bf 99}, 125403 (2019)], in their case with the use of Green function methods.
The critical Casimir force (CCF) arises from confining fluctuations in a critical fluid and thus it is a fluctuating quantity itself. While the mean CCF is universal, its (static) variance has previously been found to depend on the microscopic details of the system which effectively set a large-momentum cutoff in the underlying field theory, rendering it potentially large. This raises the question how the properties of the force variance are reflected in experimentally observable quantities, such as the thickness of a wetting film or the position of a suspended colloidal particle. Here, based on a rigorous definition of the instantaneous force, we analyze static and dynamic correlations of the CCF for a conserved fluid in film geometry for various boundary conditions within the Gaussian approximation. We find that the dynamic correlation function of the CCF is independent of the momentum cutoff and decays algebraically in time. Within the Gaussian approximation, the associated exponent depends only on the dynamic universality class but not on the boundary conditions. We furthermore consider a fluid film, the thickness of which can fluctuate under the influence of the time-dependent CCF. The latter gives rise to an effective non-Markovian noise in the equation of motion of the film boundary and induces a distinct contribution to the position variance. Within the approximations used here, at short times, this contribution grows algebraically in time whereas, at long times, it saturates and contributes to the steady-state variance of the film thickness.
We investigate in detail the Casimir torque induced by quantum vacuum fluctuations between two nanostructured plates. Our calculations are based on the scattering approach and take into account the coupling between different modes induced by the shape of the surface which are neglected in any sort of proximity approximation or effective medium approach. We then present an experimental setup aiming at measuring this torque.