Do you want to publish a course? Click here

Memory function approach to in-plane anisotropic resistivity in the antiferromagnetic phase of iron arsenide superconductors

126   0   0.0 ( 0 )
 Added by Koudai Sugimoto
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically examine anisotropy of in-plane resistivity in the striped antiferromagnetic phase of an iron arsenide superconductor by applying a memory function approach to the ordered phase with isotropic nonmagnetic impurity. We find that the anisotropy of the scattering rate is independent of carrier density when the topology of the Fermi surface is changed after the introduction of holes. On the other hand, the anisotropy of the Drude weight monotonically decreases reflecting the distortion of the Dirac Fermi surface and eventually leads to the reverse of anisotropy of resistivity, being consistent with experiment. The origin of the anisotropy is thus attributed to the interplay of impurity scattering and anisotropic electronic states.



rate research

Read More

111 - L. Liu , T. Mikami , M. Takahashi 2015
We systematically investigated the anisotropic in-plane resistivity of the iron telluride including three kinds of impurity atoms: excess Fe, Se substituted for Te, and Cu substituted for Fe. Sizable resistivity anisotropy was found in the magneto-structurally ordered phase whereas the sign is opposite ($rho_a$ $>$ $rho_b$, where the $b$-axis parameter is shorter than the $a$-axis one) to that observed in the transition-metal doped iron arsenides ($rho_a$ $<$ $rho_b$). On the other hand, our results demonstrate that the magnitude of the resistivity anisotropy in the iron tellurides is correlated with the amount of impurities, implying that the resistivity anisotropy originates from an exotic impurity effect like that in the iron arsenides. This suggests that the anisotropic carrier scattering by impurities is a universal phenomenon in the magneto-structurally ordered phase of the iron-based materials.
We use magnetic long range order as a tool to probe the Cooper pair wave function in the iron arsenide superconductors. We show theoretically that antiferromagnetism and superconductivity can coexist in these materials only if Cooper pairs form an unconventional, sign-changing state. The observation of coexistence in Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ then demonstrates unconventional pairing in this material. The detailed agreement between theory and neutron diffraction experiments, in particular for the unusual behavior of the magnetic order below $T_{c}$, demonstrates the robustness of our conclusions. Our findings strongly suggest that superconductivity is unconventional in all members of the iron arsenide family.
The distribution of valence electrons in metals usually follows the symmetry of an ionic lattice. Modulations of this distribution often occur when those electrons are not stable with respect to a new electronic order, such as spin or charge density waves. Electron density waves have been observed in many families of superconductors[1-3], and are often considered to be essential for superconductivity to exist[4]. Recent measurements[5-9] seem to show that the properties of the iron pnictides[10, 11] are in good agreement with band structure calculations that do not include additional ordering, implying no relation between density waves and superconductivity in those materials[12-15]. Here we report that the electronic structure of Ba1-xKxFe2As2 is in sharp disagreement with those band structure calculations[12-15], instead revealing a reconstruction characterized by a (pi,pi) wave vector. This electronic order coexists with superconductivity and persists up to room temperature.
Anisotropic resistivities of Bi_2Sr_2Ca_{1-x}Er_xCu_2O_8 single crystals were measured and analyzed from 4.2 to 500 K with special interest in the parent antiferromagnetic insulator of x=1.0. Although the resistivity is semiconducting along both the in- and out-of-plane directions, the temperature dependence is found to be significantly different. As a result, the resistivity ratio for x=1.0 takes a broad maximum near room temperature. The electric conduction in parent antiferromagnetic insulators is different from other semiconductors, and is as unconventional as that in high-temperature superconductors.
We propose that Resistivity Curvature Mapping (RCM) based on the in-plane resistivity data is a useful way to objectively draw an electronic phase diagrams of high-T_c cuprates, where various crossovers are important. In particular, the pseudogap crossover line can be conveniently determined by RCM. We show experimental phase diagrams obtained by RCM for Bi_{2}Sr_{2-z}La_{z}CuO_{6+delta}, La_{2-x}Sr_{x}CuO_{4}, and YBa_{2}Cu_{3}O_{y}, and demonstrate the universal nature of the pseudogap crossover. Intriguingly, the electronic crossover near optimum doping depicted by RCM appears to occur rather abruptly, suggesting that the quantum critical regime, if exists, must be very narrow.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا