Do you want to publish a course? Click here

Shell galaxies: kinematical signature of shells, satellite galaxy disruption and dynamical friction

126   0   0.0 ( 0 )
 Added by Ivana Ebrova
 Publication date 2013
  fields Physics
and research's language is English
 Authors Ivana Ebrova




Ask ChatGPT about the research

Stellar shells observed in many giant elliptical and lenticular as well as a few spiral and dwarf galaxies presumably result from radial minor mergers of galaxies. We show that the line-of-sight velocity distribution of the shells has a quadruple-peaked shape. We found simple analytical expressions that connect the positions of the four peaks of the line profile with the mass distribution of the galaxy, namely, the circular velocity at the given shell radius and the propagation velocity of the shell. The analytical expressions were applied to a test-particle simulation of a radial minor merger, and the potential of the simulated host galaxy was successfully recovered. Shell kinematics can thus become an independent tool to determine the content and distribution of dark matter in shell galaxies up to ~100 kpc from the center of the host galaxy. Moreover we investigate the dynamical friction and gradual disruption of the cannibalized galaxy during the shell formation in the framework of a simulation with test particles. The coupling of both effects can considerably redistribute positions and luminosities of shells. Neglecting them can lead to significant errors in attempts to date the merger in observed shell galaxies.



rate research

Read More

Using N-body simulations of shell galaxies created in nearly radial minor mergers, we investigate the error of collision dating, resulting from the neglect of dynamical friction and of gradual disruption of the cannibalized dwarf.
With the goal to refine modelling of shell galaxies and the use of shells to probe the merger history, we develop a new method for implementing dynamical friction in test-particle simulations of radial minor mergers. The friction is combined with a gradual decay of the dwarf galaxy. The coupling of both effects can considerably redistribute positions and luminosities of shells; neglecting them can lead to significant errors in attempts to date the merger.
Observations of high-redshift quasars provide information on the massive black holes (MBHs) powering them and the galaxies hosting them. Current observations of $z gtrsim 6$ hosts, at sub-mm wavelengths, trace the properties of cold gas, and these are used to compare with the correlations between MBHs and galaxies characterising the $z=0$ population. The relations at $z=0$, however, rely on stellar-based tracers of the galaxy properties. We perform a very-high resolution cosmological zoom-in simulation of a $z=7$ quasar including state-of-the-art non-equilibrium chemistry, MBH formation, growth and feedback, to assess the evolution of the galaxy host and the central MBH, and compare the results with recent ALMA observations of high-redshift quasars. We measure both the stellar-based quantities used to establish the $z=0$ correlations, as well as the gas-based quantities available in $z gtrsim 6$ observations, adopting the same assumptions and techniques used in observational studies. The high-redshift studies argued that MBHs at high redshift deviate from the local MBH-galaxy correlations. In our analysis of the single galaxy we evolve, we find that the high-redshift population sits on the same correlations as the local one, when using the same tracers used at $z=0$. When using the gas-based tracers, however, MBHs appear to be over-massive. The discrepancy between local and high-redshift MBHs seems caused by the different tracers employed, and necessary assumptions, and not by an intrinsic difference. Better calibration of the tracers, higher resolution data and availability of facilities that can probe the stellar population will be crucial to assess precisely and accurately high-redshift quasar hosts.
A detailed model of the tidal disruption events (TDEs) has been constructed using stellar dynamical and gas dynamical inputs that include black hole (BH) mass $M_{bullet}$, specific orbital energy $E$ and angular momentum $J$, star mass $M_{star}$ and radius $R_{star}$, and the pericenter of the star orbit $r_{p}(E,hspace{1mm}J,hspace{1mm}M_{bullet})$. We solved the steady state Fokker--Planck equation using the standard loss cone theory for the galactic density profile $rho (r) propto r^{-gamma}$ and stellar mass function $xi(m) $ where $m=M_{star}/M_{odot}$ and obtained the feeding rate of stars to the BH integrated over the phase space as $dot{N}_{t} propto M_{bullet}^beta$, where $beta= -0.3pm 0.01$ for $M_{bullet}>10^7 M_{odot}$ and $sim 6.8 hspace{1mm} times 10^{-5}$ Yr$^{-1}$ for $gamma=0.7$. We use this to model the in-fall rate of the disrupted debris, $dot{M}(E,hspace{1mm}J,hspace{1mm}m,hspace{1mm}t)$, and discuss the conditions for the disk formation, finding that the accretion disk is almost always formed for the fiduciary range of the physical parameters. We also find the conditions under which the disk formed from the tidal debris of a given star with a super Eddington accretion phase. We have simulated the light curve profiles in the relevant optical g band and soft X-rays for both super and sub-Eddington accretion disks as a function of $dot{M}(E,hspace{1mm}J,hspace{1mm}t)$. Using this, standard cosmological parameters, and mission instrument details, we predict the detectable TDE rates for various forthcoming surveys finally as a function of $gamma$.
The motion of a point like object of mass $M$ passing through the background potential of massive collisionless particles ($m << M$) suffers a steady deceleration named dynamical friction. In his classical work, Chandrasekhar assumed a Maxwellian velocity distribution in the halo and neglected the self gravity of the wake induced by the gravitational focusing of the mass $M$. In this paper, by relaxing the validity of the Maxwellian distribution due to the presence of long range forces, we derive an analytical formula for the dynamical friction in the context of the $q$-nonextensive kinetic theory. In the extensive limiting case ($q = 1$), the classical Gaussian Chandrasekhar result is recovered. As an application, the dynamical friction timescale for Globular Clusters spiraling to the galactic center is explicitly obtained. Our results suggest that the problem concerning the large timescale as derived by numerical $N$-body simulations or semi-analytical models can be understood as a departure from the standard extensive Maxwellian regime as measured by the Tsallis nonextensive $q$-parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا