We examine the dynamics of the bid and ask queues of a limit order book and their relationship with the intensity of trade arrivals. In particular, we study the probability of price movements and trade arrivals as a function of the quote imbalance at the top of the limit order book. We propose a stochastic model in an attempt to capture the joint dynamics of the top of the book queues and the trading process, and describe a semi-analytic approach to calculate the relative probability of market events. We calibrate the model using historical market data and discuss the quality of fit and practical applications of the results.
In this paper, we develop a Markovian model that deals with the volume offered at the best quote of an electronic order book. The volume of the first limit is a stochastic process whose paths are periodically interrupted and reset to a new value, either by a new limit order submitted inside the spread or by a market order that removes the first limit. Using applied probability results on killing and resurrecting Markov processes, we derive the stationary distribution of the volume offered at the best quote. All proposed models are empirically fitted and compared, stressing the importance of the proposed mechanisms.
In order-driven markets, limit-order book (LOB) resiliency is an important microscopic indicator of market quality when the order book is hit by a liquidity shock and plays an essential role in the design of optimal submission strategies of large orders. However, the evolutionary behavior of LOB resilience around liquidity shocks is not well understood empirically. Using order flow data sets of Chinese stocks, we quantify and compare the LOB dynamics characterized by the bid-ask spread, the LOB depth and the order intensity surrounding effective market orders with different aggressiveness. We find that traders are more likely to submit effective market orders when the spreads are relatively low, the same-side depth is high, and the opposite-side depth is low. Such phenomenon is especially significant when the initial spread is 1 tick. Although the resiliency patterns show obvious diversity after different types of market orders, the spread and depth can return to the sample average within 20 best limit updates. The price resiliency behavior is dominant after aggressive market orders, while the price continuation behavior is dominant after less-aggressive market orders. Moreover, the effective market orders produce asymmetrical stimulus to limit orders when the initial spreads equal to 1 tick. Under this case, effective buy market orders attract more buy limit orders and effective sell market orders attract more sell limit orders. The resiliency behavior of spread and depth is linked to limit order intensity.
Machine learning (especially reinforcement learning) methods for trading are increasingly reliant on simulation for agent training and testing. Furthermore, simulation is important for validation of hand-coded trading strategies and for testing hypotheses about market structure. A challenge, however, concerns the robustness of policies validated in simulation because the simulations lack fidelity. In fact, researchers have shown that many market simulation approaches fail to reproduce statistics and stylized facts seen in real markets. As a step towards addressing this we surveyed the literature to collect a set of reference metrics and applied them to real market data and simulation output. Our paper provides a comprehensive catalog of these metrics including mathematical formulations where appropriate. Our results show that there are still significant discrepancies between simulated markets and real ones. However, this work serves as a benchmark against which we can measure future improvement.
We studied non-dynamical stochastic resonance for the number of trades in the stock market. The trade arrival rate presents a deterministic pattern that can be modeled by a cosine function perturbed by noise. Due to the nonlinear relationship between the rate and the observed number of trades, the noise can either enhance or suppress the detection of the deterministic pattern. By finding the parameters of our model with intra-day data, we describe the trading environment and illustrate the presence of SR in the trade arrival rate of stocks in the U.S. market.
We study the analytical properties of a one-side order book model in which the flows of limit and market orders are Poisson processes and the distribution of lifetimes of cancelled orders is exponential. Although simplistic, the model provides an analytical tractability that should not be overlooked. Using basic results for birth-and-death processes, we build an analytical formula for the shape (depth) of a continuous order book model which is both founded by market mechanisms and very close to empirically tested formulas. We relate this shape to the probability of execution of a limit order, highlighting a law of conservation of the flows of orders in an order book. We then extend our model by allowing random sizes of limit orders, hereby allowing to study the relationship between the size of the incoming limit orders and the shape of the order book. Our theoretical model shows that, for a given total volume of incoming limit orders, the less limit orders are submitted (i.e. the larger the average size of these limit orders), the deeper is the order book around the spread. This theoretical relationship is finally empirically tested on several stocks traded on the Paris stock exchange.
Alexander Lipton
,Umberto Pesavento
,Michael G Sotiropoulos
.
(2013)
.
"Trade arrival dynamics and quote imbalance in a limit order book"
.
Michael Sotiropoulos
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا