Do you want to publish a course? Click here

A New Perspective on the Radio Active Zone at The Galactic Center - Feedback from Nuclear Activities

139   0   0.0 ( 0 )
 Added by Jun-Hui Zhao
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on our deep image of Sgr A using broadband data observed with the Jansky VLA at 6 cm, we present a new perspective of the radio bright zone at the Galactic center. We further show the radio detection of the X-ray Cannonball, a candidate neutron star associated with the Galactic center SNR Sgr A East. The radio image is compared with the Chandra X-ray image to show the detailed structure of the radio counterparts of the bipolar X-ray lobes. The bipolar lobes are likely produced by the winds from the activities within Sgr A West, which could be collimated by the inertia of gas in the CND, or by the momentum driving of Sgr A*; and the poloidal magnetic fields likely play an important role in the collimation. The less-collimated SE lobe, in comparison to the NW one, is perhaps due to the fact that the Sgr A East SN might have locally reconfigured the magnetic field toward negative galactic latitudes. In agreement with the X-ray observations, the time-scale of ~ $1times10^4$ yr estimated for the outermost radio ring appears to be comparable to the inferred age of the Sgr A East SNR.



rate research

Read More

New observations of Sgr A have been carried out with the VLA using the broadband (2 GHz) continuum mode at 5.5 GHz, covering the central 30 pc region of the RBZ at the Galactic center. Using the MS-MFS algorithms in CASA, we have imaged Sgr A with a resolution of 1, achieving an rms 8 $mu$Jy/beam, and a dynamic range 100,000:1.The radio image is compared with X-ray, CN emission-line and Paschen-$alpha$ images obtained using Chandra, SMA and HST/NICMOS, respectively. We discuss several prominent radio features. The Sgr A West Wings extend 5 pc from the NW and SE tips of the ionized Mini-spiral in Sgr A West to positions located 2.9 and 2.4 arc min to the NW and SE of Sgr A*, respectively. The NW wing, along with several other prominent features, including the NW Streamers, form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 14.4 pc x 7.3 pc, has a known X-ray counterpart. A row of three thermally emitting rings is observed in the NW lobe. A field containing numerous amorphous radio blobs extends for a distance of ~2 arc min beyond the tip of the SE wing; these features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-$alpha$ counterparts, suggesting that a shock interaction of ambient gas concentrations with a collimated nuclear wind (outflow) that may be driven by radiation force from the central star cluster within the CND. Finally, we remark on a prominent radio feature located within the shell of the Sgr A East SNR. Because this feature -- the Sigma Front -- correlates well in shape and orientation with the nearby edge of the CND, we propose that it is a reflected shock wave resulting from the impact of the Sgr A East blast wave on the CND.
223 - J. F. Radcliffe 2021
For nearly seven decades astronomers have been studying active galaxies, that is to say galaxies with actively accreting central supermassive black holes, AGN. A small fraction of these are characterized by luminous, powerful radio emission: this class is known as radio-loud. A substantial fraction, the so-called radio-quiet AGN population, displays intermediate or weak radio emission. However, an appreciable fraction of strong X-rays emitting AGN are characterized by the absence of radio emission, down to an upper limit of about $10^{-7}$ times the luminosity of the most powerful radio-loud AGN. We wish to address the nature of these - seemingly radio-silent - X-ray-luminous AGN and their host galaxies: is there any radio emission, and if so, where does it originate? Focusing on the GOODS-N field, we examine the nature of these objects employing stacking techniques on ultra-deep radio data obtained with the JVLA. We combine these radio data with Spitzer far-infrared data. We establish the absence, or totally insignificant contribution of jet-driven radio-emission in roughly half of the otherwise normal population of X-ray luminous AGN, which appear to reside in normal star-forming galaxies. We conclude that AGN- or jet-driven radio emission is simply a mechanism that may be at work or may be dormant in galaxies with actively accreting black holes. The latter can be classified as radio-silent AGN.
We calculate the most stringent constraints up to date on the parameter space for sterile neutrino warm dark matter models possessing a radiative decay channel into X-rays. These constraints arise from the X-ray flux observations from the Galactic center (central parsec), taken by the XMM and NuSTAR missions. We compare the results obtained from using different dark matter density profiles for the Milky Way, such as NFW, Burkert or Einasto, to that produced by the Ruffini-Arguelles-Rueda (RAR) fermionic model, which has the distinct feature of depending on the particle mass. We show that due to the novel core-halo morphology present in the RAR profile, the allowed particle mass window is narrowed down to $m_ssim 10-15$ keV, when analyzed within the $ u$MSM sterile neutrino model. We further discuss on the possible effects in the sterile neutrino parameter-space bounds due to a self-interacting nature of the dark matter candidates.
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array (VLA) at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (a spectral index of ~0.3) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (bulk Lorentz factors of >~ 3) of jet and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.
The Galactic Center is the closest galactic nucleus that can be studied with unprecedented angular resolution and sensitivity. We summarize recent basic observational results on Sagittarius A* and the conditions for star formation in the central stellar cluster. We cover results from the radio, infrared, and X-ray domain and include results from simulation as well. From (sub-)mm and near-infrared variability and near-infrared polarization data we find that the SgrA* system (supermassive black hole spin, a potential temporary accretion disk and/or outflow) is well ordered in its geometrical orientation and in its emission process that we assume to reflect the accretion process onto the supermassive black hole (SMBH).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا