Do you want to publish a course? Click here

An independent determination of Fomalhaut bs orbit and the dynamical effects on the outer dust belt

536   0   0.0 ( 0 )
 Added by Herve Beust
 Publication date 2013
  fields Physics
and research's language is English
 Authors Herve Beust




Ask ChatGPT about the research

The nearby star Fomalhaut harbours a cold, moderately eccentric dust belt with a sharp inner edge near 133 au. A low-mass, common proper motion companion (Fom b), was discovered near the inner edge and was identified as a planet candidate that could account for the belt morphology. However, the most recent orbit determination based on four epochs of astrometry over eight years reveals a highly eccentric orbit that appears to cross the belt in the sky plane projection. We perform here a full orbital determination based on the available astrometric data to independently validate the orbit estimates previously presented. Adopting our values for the orbital elements and their associated uncertainties, we then study the dynamical interaction between the planet and the dust ring, to check whether the proposed disk sculpting scenario by Fom b is plausible. We used a dedicated MCMC code to derive the statistical distributions of the orbital elements of Fom b. Then we used symplectic N-body integration to investigate the dynamics of the dust belt, as perturbed by a single planet. Different attempts were made assuming different masses for Fom b. We also performed a semi-analytical study to explain our results. Our results are in good agreement with others regarding the orbit of Fom b. We find that the orbit is highly eccentric, is close to apsidally aligned with the belt, and has a moderate mutual inclination relative to the belt plane of. If coplanar, this orbit crosses the disk. Our dynamical study then reveals that the observed planet could sculpt a transient belt configuration with a similar eccentricity to what is observed, but it would not be simultaneously apsidally aligned with the planet. This transient configuration only occurs a short time after the planet is placed on such an orbit (assuming an initially circular disk), a time that is inversely proportional to the planets mass, and that is in any case much less than the 440 Myr age of the star. We constrain how long the observed dust belt could have survived with Fom b on its current orbit, as a function of its possible mass. This analysis leads us to conclude that Fom b is likely to have low mass, that it is unlikely to be responsible for the sculpting of the belt, and that it supports the hypothesis of a more massive, less eccentric planet companion Fom c.



rate research

Read More

148 - B. Acke , M. Min , C. Dominik 2012
Fomalhaut is a young, nearby star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7 and 36.7 arcsec at wavelengths between 70 and 500 micrometer. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We use a dynamical model together with radiative-transfer tools to derive the parameters of the debris disk. We include detailed models of the interaction of the dust grains with radiation, for both the radiation pressure and the temperature determination. Comparing these models to the spatially resolved temperature information contained in the images allows us to place strong constraints on the presence of grains that will be blown out of the system by radiation pressure. We use this to derive the dynamical parameters of the system. The appearance of the belt points towards a remarkably active system in which dust grains are produced at a very high rate by a collisional cascade in a narrow region filled with dynamically excited planetesimals. Dust particles with sizes below the blow-out size are abundantly present. The equivalent of 2000 one-km-sized comets are destroyed every day, out of a cometary reservoir amounting to 110 Earth masses. From comparison of their scattering and thermal properties, we find evidence that the dust grains are fluffy aggregates, which indicates a cometary origin. The excess emission at the location of the star may be produced by hot dust with a range of temperatures, but may also be due to gaseous free-free emission from a stellar wind.
HR8799 is a benchmark system for direct imaging studies. It hosts two debris belts, which lie internally and externally to four giant planets. This paper considers how the four known planets and a possible fifth planet, interact with the external population of debris through N-body simulations. We find that when only the known planets are included, the inner edge of the outer belt predicted by our simulations is much closer to the outermost planet than recent ALMA observations suggest. We subsequently include a fifth planet in our simulations with a range of masses and semi-major axes, which is external to the outermost known planet. We find that a fifth planet with a mass and semi-major axis of 0.1$mathrm{M_J}$ and 138au predicts an outer belt that agrees well with ALMA observations, whilst remaining stable for the lifetime of HR8799 and lying below current direct imaging detection thresholds. We also consider whether inward scattering of material from the outer belt can input a significant amount of mass into the inner belt. We find that for the current age of HR8799, only $sim$1% of the mass loss rate of the inner disk can be replenished by inward scattering. However we find that the higher rate of inward scattering during the first $sim$10Myr of HR8799 would be expected to cause warm dust emission at a level similar to that currently observed, which may provide an explanation for such bright emission in other systems at $sim10$Myr ages.
Using VLT/SPHERE near-infrared dual-band imaging and integral field spectroscopy we discovered an edge-on debris disk around the 17,Myr old A-type member of the Scorpius-Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright and symmetrically placed knots at 0.3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bow in the disk, but we identify a pair of symmetric, hook-like features in both wings. Based on similar features in the Beta Pictoris disk we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen, inner belt which is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales.
The seven known main belt comets (MBCs) have orbital characteristics of main belt asteroids yet exhibit dust ejection like comets. In order to constrain their physical and orbital properties we searched the Thousand Asteroid Light Curve Survey (TALCS; Masiero et al. 2009) for additional candidates using two diagnostics: tail and coma detection. This was the most sensitive MBC survey effort to date, extending the search from MBCs with H~18 (D~1 km) to H~21 (D~150 m). We fit each of the 924 TALCS objects to a PSF model incorporating both a coma and nuclear component to measure the fractional contribution of the coma to the total surface brightness. We determined the significance of the coma detection using the same algorithm on a sample of comparable null detections. We did not identify any MBC candidates with this technique to a sensitivity limit on the order of cometary mass loss rate of about 0.1 kg/s. Our tail detection algorithm identified statistically significant flux in a segmented annulus around the candidate object. We show that the technique can detect tail activity throughout the asteroid belt to the level of the currently known MBCs. Although we did not identify any MBC candidates with this technique, we find a statistically significant detection of faint activity in the entire ensemble of TALCS asteroids. This suggests that many main belt asteroids are active at very low levels. We set 90% upper confidence limits on the number distribution of MBCs as a function of absolute magnitude, semimajor axis, eccentricity, and inclination. There are <~ 400000 MBCs in the main belt brighter than H_V=21 (~150 m) and the MBC:MBA ratio is <~ 1:400. We further comment on the ability of observations to meaningfully constrain the snow lines location. Under some reasonable and simple assumptions we claim 85% confidence that the contemporary snow line lies beyond 2.5 AU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا