Do you want to publish a course? Click here

Herschel images of Fomalhaut. An extrasolar Kuiper Belt at the height of its dynamical activity

146   0   0.0 ( 0 )
 Added by Bram Acke
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fomalhaut is a young, nearby star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7 and 36.7 arcsec at wavelengths between 70 and 500 micrometer. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We use a dynamical model together with radiative-transfer tools to derive the parameters of the debris disk. We include detailed models of the interaction of the dust grains with radiation, for both the radiation pressure and the temperature determination. Comparing these models to the spatially resolved temperature information contained in the images allows us to place strong constraints on the presence of grains that will be blown out of the system by radiation pressure. We use this to derive the dynamical parameters of the system. The appearance of the belt points towards a remarkably active system in which dust grains are produced at a very high rate by a collisional cascade in a narrow region filled with dynamically excited planetesimals. Dust particles with sizes below the blow-out size are abundantly present. The equivalent of 2000 one-km-sized comets are destroyed every day, out of a cometary reservoir amounting to 110 Earth masses. From comparison of their scattering and thermal properties, we find evidence that the dust grains are fluffy aggregates, which indicates a cometary origin. The excess emission at the location of the star may be produced by hot dust with a range of temperatures, but may also be due to gaseous free-free emission from a stellar wind.



rate research

Read More

88 - S. Xu , B. Zuckerman , P. Dufour 2017
The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary systems is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is $sim$ 2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is $sim$ 10$^{22}$ g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarfs tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond
532 - Herve Beust 2013
The nearby star Fomalhaut harbours a cold, moderately eccentric dust belt with a sharp inner edge near 133 au. A low-mass, common proper motion companion (Fom b), was discovered near the inner edge and was identified as a planet candidate that could account for the belt morphology. However, the most recent orbit determination based on four epochs of astrometry over eight years reveals a highly eccentric orbit that appears to cross the belt in the sky plane projection. We perform here a full orbital determination based on the available astrometric data to independently validate the orbit estimates previously presented. Adopting our values for the orbital elements and their associated uncertainties, we then study the dynamical interaction between the planet and the dust ring, to check whether the proposed disk sculpting scenario by Fom b is plausible. We used a dedicated MCMC code to derive the statistical distributions of the orbital elements of Fom b. Then we used symplectic N-body integration to investigate the dynamics of the dust belt, as perturbed by a single planet. Different attempts were made assuming different masses for Fom b. We also performed a semi-analytical study to explain our results. Our results are in good agreement with others regarding the orbit of Fom b. We find that the orbit is highly eccentric, is close to apsidally aligned with the belt, and has a moderate mutual inclination relative to the belt plane of. If coplanar, this orbit crosses the disk. Our dynamical study then reveals that the observed planet could sculpt a transient belt configuration with a similar eccentricity to what is observed, but it would not be simultaneously apsidally aligned with the planet. This transient configuration only occurs a short time after the planet is placed on such an orbit (assuming an initially circular disk), a time that is inversely proportional to the planets mass, and that is in any case much less than the 440 Myr age of the star. We constrain how long the observed dust belt could have survived with Fom b on its current orbit, as a function of its possible mass. This analysis leads us to conclude that Fom b is likely to have low mass, that it is unlikely to be responsible for the sculpting of the belt, and that it supports the hypothesis of a more massive, less eccentric planet companion Fom c.
334 - M. A. Kenworthy 2012
We report on a search for low mass companions within 10 AU of the star Fomalhaut, using narrow band observations at 4.05 microns obtained with the Apodizing Phase Plate (APP) coronagraph on the VLT/NaCo. Our observations place a model dependent upper mass limit of 12-20 Jupiter masses from 4 to 10 AU, covering the semi-major axis search space between interferometric imaging measurements and other direct imaging non-detections. These observations rule out models where the large semi-major axis for the putative candidate companion Fomalhaut b is explained by dynamical scattering from a more massive companion in the inner stellar system, where such giant planets are thought to form.
We study the development of activity in the incoming long-period comet C/2017 K2 over the heliocentric distance range 9 < r_H < 16 AU. The comet continues to be characterized by a coma of sub-millimeter and larger particles ejected at low velocity. In a fixed co-moving volume around the nucleus we find that the scattering cross-section of the coma is related to the heliocentric distance by a power law with heliocentric index $s = 1.14pm0.05$. This dependence is significantly weaker than the inverse square variation of the insolation as a result of two effects. These are, first, the heliocentric dependence of the dust velocity and, second, a lag effect due to very slow-moving particles ejected long before the observations were taken. A Monte Carlo model of the photometry shows that dust production beginning at r_H ~ 35 AU is needed to match the measured heliocentric index, with only a slight dependence on the particle size distribution. Mass loss rates in dust at 10 AU are of order 1000 kg/s, while loss rates in gas may be much smaller, depending on the unknown dust to gas ratio. Consequently, the ratio of the non-gravitational acceleration to the local solar gravity may, depending on the nucleus size, attain values comparable to values found in short-period comets at much smaller distances. Non-gravitational acceleration in C/2017 K2 and similarly distant comets, while presently unmeasured, may limit the accuracy with which we can infer the properties of the Oort cloud from the orbits of long-period comets.
We present the first polarimetric detection of the inner disk component around the pre-main sequence B9.5 star HD 141569A. Gemini Planet Imager H-band (1.65 micron) polarimetric differential imaging reveals the highest signal-to-noise ratio detection of this ring yet attained and traces structure inwards to 0.25 (28 AU at a distance of 111 pc). The radial polarized intensity image shows the east side of the disk, peaking in intensity at 0.40 (44 AU) and extending out to 0.9 (100 AU). There is a spiral arm-like enhancement to the south, reminiscent of the known spiral structures on the outer rings of the disk. The location of the spiral arm is coincident with 12CO J=3-2 emission detected by ALMA, and hints at a dynamically active inner circumstellar region. Our observations also show a portion of the middle dusty ring at ~220 AU known from previous observations of this system. We fit the polarized H-band emission with a continuum radiative transfer Mie model. Our best-fit model favors an optically thin disk with a minimum dust grain size close to the blow-out size for this system: evidence of on-going dust production in the inner reaches of the disk. The thermal emission from this model accounts for virtually all of the far-infrared and millimeter flux from the entire HD 141569A disk, in agreement with the lack of ALMA continuum and CO emission beyond ~100 AU. A remaining 8-30 micron thermal excess a factor of ~2 above our model argues for a yet-unresolved warm innermost 5-15 AU component of the disk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا