Do you want to publish a course? Click here

Fault-tolerant thresholds for quantum error correction with the surface code

180   0   0.0 ( 0 )
 Added by Ashley Stephens
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The surface code is a promising candidate for fault-tolerant quantum computation, achieving a high threshold error rate with nearest-neighbor gates in two spatial dimensions. Here, through a series of numerical simulations, we investigate how the precise value of the threshold depends on the noise model, measurement circuits, and decoding algorithm. We observe thresholds between 0.502(1)% and 1.140(1)% per gate, values which are generally lower than previous estimates.



rate research

Read More

Bosonic quantum error correction is a viable option for realizing error-corrected quantum information processing in continuous-variable bosonic systems. Various single-mode bosonic quantum error-correcting codes such as cat, binomial, and GKP codes have been implemented experimentally in circuit QED and trapped ion systems. Moreover, there have been many theoretical proposals to scale up such single-mode bosonic codes to realize large-scale fault-tolerant quantum computation. Here, we consider the concatenation of the single-mode GKP code with the surface code, namely, the surface-GKP code. In particular, we thoroughly investigate the performance of the surface-GKP code by assuming realistic GKP states with a finite squeezing and noisy circuit elements due to photon losses. By using a minimum-weight perfect matching decoding algorithm on a 3D space-time graph, we show that fault-tolerant quantum error correction is possible with the surface-GKP code if the squeezing of the GKP states is higher than 11.2dB in the case where the GKP states are the only noisy elements. We also show that the squeezing threshold changes to 18:6dB when both the GKP states and circuit elements are comparably noisy. At this threshold, each circuit component fails with probability 0.69%. Finally, if the GKP states are noiseless, fault-tolerant quantum error correction with the surface-GKP code is possible if each circuit element fails with probability less than 0.81%. We stress that our decoding scheme uses the additional information from GKP-stabilizer measurements and we provide a simple method to compute renormalized edge weights of the matching graphs. Furthermore, our noise model is general as it includes full circuit-level noise.
Fault-tolerant quantum error correction is essential for implementing quantum algorithms of significant practical importance. In this work, we propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits. In our proposal, we use error-corrected two-qubit gates between GKP qubits and introduce a maximum likelihood decoding strategy for correcting shift errors in the two-GKP-qubit gates. Our proposed decoding reduces the total CNOT failure rate of the GKP qubits, e.g., from $0.87%$ to $0.36%$ at a GKP squeezing of $12$dB, compared to the case where the simple closest-integer decoding is used. Then, by concatenating the GKP code with the surface code, we find that the threshold GKP squeezing is given by $9.9$dB under the the assumption that finite-squeezing of the GKP states is the dominant noise source. More importantly, we show that a low logical failure rate $p_{L} < 10^{-7}$ can be achieved with moderate hardware requirements, e.g., $291$ modes and $97$ qubits at a GKP squeezing of $12$dB as opposed to $1457$ bare qubits for the standard rotated surface code at an equivalent noise level (i.e., $p=0.36%$). Such a low failure rate of our surface-GKP code is possible through the use of space-time correlated edges in the matching graphs of the surface code decoder. Further, all edge weights in the matching graphs are computed dynamically based on analog information from the GKP error correction using the full history of all syndrome measurement rounds. We also show that a highly-squeezed GKP state of GKP squeezing $gtrsim 12$dB can be experimentally realized by using a dissipative stabilization method, namely, the Big-small-Big method, with fairly conservative experimental parameters. Lastly, we introduce a three-level ancilla scheme to mitigate ancilla decay errors during a GKP state preparation.
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system. These extra degrees of freedom enable the detection and correction of errors, but also increase the operational complexity of the encoded logical qubit. Fault-tolerant circuits contain the spread of errors while operating the logical qubit, and are essential for realizing error suppression in practice. While fault-tolerant design works in principle, it has not previously been demonstrated in an error-corrected physical system with native noise characteristics. In this work, we experimentally demonstrate fault-tolerant preparation, measurement, rotation, and stabilizer measurement of a Bacon-Shor logical qubit using 13 trapped ion qubits. When we compare these fault-tolerant protocols to non-fault tolerant protocols, we see significant reductions in the error rates of the logical primitives in the presence of noise. The result of fault-tolerant design is an average state preparation and measurement error of 0.6% and a Clifford gate error of 0.3% after error correction. Additionally, we prepare magic states with fidelities exceeding the distillation threshold, demonstrating all of the key single-qubit ingredients required for universal fault-tolerant operation. These results demonstrate that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems. With improved two-qubit gates and the use of intermediate measurements, a stabilized logical qubit can be achieved.
218 - Rui Chao , Ben W. Reichardt 2019
Conventional fault-tolerant quantum error-correction schemes require a number of extra qubits that grows linearly with the codes maximum stabilizer generator weight. For some common distance-three codes, the recent flag paradigm uses just two extra qubits. Chamberland and Beverland (2018) provide a framework for flag error correction of arbitrary-distance codes. However, their construction requires conditions that only some code families are known to satisfy. We give a flag error-correction scheme that works for any stabilizer code, unconditionally. With fast qubit measurement and reset, it uses $d+1$ extra qubits for a distance-$d$ code.
Extensive quantum error correction is necessary in order to perform a useful computation on a noisy quantum computer. Moreover, quantum error correction must be implemented based on imperfect parity check measurements that may return incorrect outcomes or inject additional faults into the qubits. To achieve fault-tolerant error correction, Shor proposed to repeat the sequence of parity check measurements until the same outcome is observed sufficiently many times. Then, one can use this information to perform error correction. A basic implementation of this fault tolerance strategy requires $Omega(r d^2)$ parity check measurements for a distance-d code defined by r parity checks. For some specific highly structured quantum codes, Bombin has shown that single-shot fault-tolerant quantum error correction is possible using only r measurements. In this work, we demonstrate that fault-tolerant quantum error correction can be achieved using $O(d log(d))$ measurements for any code with distance $d geq Omega(n^alpha)$ for some constant $alpha > 0$. Moreover, we prove the existence of a sub-single-shot fault-tolerant quantum error correction scheme using fewer than r measurements. In some cases, the number of parity check measurements required for fault-tolerant quantum error correction is exponentially smaller than the number of parity checks defining the code.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا