No Arabic abstract
Adopting the throat quantization pioneered by Louko and Makela, we derive the mass and area spectra for the Schwarzschild-Tangherlini black hole and its anti-de~Sitter (AdS) generalization in arbitrary dimensions. We obtain exact spectra in three special cases: the three-dimensional BTZ black hole, toroidal black holes in any dimension, and five-dimensional Schwarzshild-Tangherlini(-AdS) black holes. For the remaining cases the spectra are obtained for large mass using the WKB approximation. For asymptotically flat black holes, the area/entropy has an equally spaced spectrum, as expected from previous work. In the asymptotically AdS case on the other hand, it is the mass spectrum that is equally spaced. Our exact results for the BTZ black hole with Dirichlet and Neumann boundary conditions are consistent with the spacing of the spectra of the corresponding operators in the dual CFT.
We investigate exact non-stationary quantum states of vacuum toroidal black holes with a negative cosmological constant in arbitrary dimensions using the framework of throat quantization pioneered by Louko and Makela for Schwarzschild black holes. The system is equivalent to a harmonic oscillator on the half line, in which the central singularity is resolved quantum mechanically by imposing suitable boundary conditions that preserve unitarity. We identify two suitable families of exact time-dependent wave functions with Dirichlet or Neumann boundary conditions at the location of the classical singularity. We find that for highly non-stationary states of large-mass black holes, quantum fluctuations are not negligible in one family, while they are greatly suppressed in the other. The latter, therefore, may provide candidates for describing the dynamics of semi-classical black holes.
We study linear gravitational perturbations of Schwarzschild spacetime by solving numerically Regge-Wheeler-Zerilli equations in time domain using hyperboloidal surfaces and a compactifying radial coordinate. We stress the importance of including the asymptotic region in the computational domain in studies of gravitational radiation. The hyperboloidal approach should be helpful in a wide range of applications employing black hole perturbation theory.
We present a polymer quantization of spherically symmetric Einstein gravity in which the polymerized variable is the area of the Einstein-Rosen wormhole throat. In the classical polymer theory, the singularity is replaced by a bounce at a radius that depends on the polymerization scale. In the polymer quantum theory, we show numerically that the area spectrum is evenly-spaced and in agreement with a Bohr-Sommerfeld semiclassical estimate, and this spectrum is not qualitatively sensitive to issues of factor ordering or boundary conditions except in the lowest few eigenvalues. In the limit of small polymerization scale we recover, within the numerical accuracy, the area spectrum obtained from a Schrodinger quantization of the wormhole throat dynamics. The prospects of recovering from the polymer throat theory a full quantum-corrected spacetime are discussed.
We investigate spherically symmetric, steady state, adiabatic accretion onto a Tangherlini-Reissner-Nordstrom black hole in arbitrary dimensions by using $D$-dimensional general relativity. We obtain basic equations for accretion and determine analytically the critical points, the critical fluid velocity, and the critical sound speed. We lay emphasis on the condition under which the accretion is possible. This condition constrains the ratio of mass to charge in a narrow limit, which is independent of dimension for large dimension. This condition may challenge the validity of the cosmic censorship conjecture since a naked singularity is eventually produced as the magnitude of charge increases compared to the mass of black hole.
Acoustic black hole is becoming an attractive topic in recent years, for it open-up new direction for experimental explorations of black holes in laboratories. In this work, the gravitational bending of acoustic Schwarzschild black hole is investigated. We resort to the approach developed by Gibbons and Werner, in which the gravitational bending is calculated using the Gauss-Bonnet theorem in geometrical topology. In this approach, the gravitational bending is directly connected with the topological properties of curved spacetime. The deflection angle of light for acoustic Schwarzschild black hole is calculated and carefully analyzed in this work. The results show that the gravitational bending effect in acoustic black hole is enhanced, compared with those in conventional Schwarzschild black hole. This observation indicates that the acoustic black holes may be more easily detectable in gravitational bending and weak gravitational lensing observations. Keywords: Gravitational Bending; Gauss-Bonnet Theorem; Acoustic Schwarzschild Black Hole