Do you want to publish a course? Click here

Temporal scaling in information propagation

448   0   0.0 ( 0 )
 Added by Junming Huang
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.



rate research

Read More

The full range of activity in a temporal network is captured in its edge activity data -- time series encoding the tie strengths or on-off dynamics of each edge in the network. However, in many practical applications, edge-level data are unavailable, and the network analyses must rely instead on node activity data which aggregates the edge-activity data and thus is less informative. This raises the question: Is it possible to use the static network to recover the richer edge activities from the node activities? Here we show that recovery is possible, often with a surprising degree of accuracy given how much information is lost, and that the recovered data are useful for subsequent network analysis tasks. Recovery is more difficult when network density increases, either topologically or dynamically, but exploiting dynamical and topological sparsity enables effective solutions to the recovery problem. We formally characterize the difficulty of the recovery problem both theoretically and empirically, proving the conditions under which recovery errors can be bounded and showing that, even when these conditions are not met, good quality solutions can still be derived. Effective recovery carries both promise and peril, as it enables deeper scientific study of complex systems but in the context of social systems also raises privacy concerns when social information can be aggregated across multiple data sources.
Social networks play a fundamental role in the diffusion of information. However, there are two different ways of how information reaches a person in a network. Information reaches us through connections in our social networks, as well as through the influence of external out-of-network sources, like the mainstream media. While most present models of information adoption in networks assume information only passes from a node to node via the edges of the underlying network, the recent availability of massive online social media data allows us to study this process in more detail. We present a model in which information can reach a node via the links of the social network or through the influence of external sources. We then develop an efficient model parameter fitting technique and apply the model to the emergence of URL mentions in the Twitter network. Using a complete one month trace of Twitter we study how information reaches the nodes of the network. We quantify the external influences over time and describe how these influences affect the information adoption. We discover that the information tends to jump across the network, which can only be explained as an effect of an unobservable external influence on the network. We find that only about 71% of the information volume in Twitter can be attributed to network diffusion, and the remaining 29% is due to external events and factors outside the network.
78 - En-Yu Yu , Yan Fu , Jun-Lin Zhou 2021
In transportation, communication, social and other real complex networks, some critical edges act a pivotal part in controlling the flow of information and maintaining the integrity of the structure. Due to the importance of critical edges in theoretical studies and practical applications, the identification of critical edges gradually become a hot topic in current researches. Considering the overlap of communities in the neighborhood of edges, a novel and effective metric named subgraph overlap (SO) is proposed to quantifying the significance of edges. The experimental results show that SO outperforms all benchmarks in identifying critical edges which are crucial in maintaining the integrity of the structure and functions of networks.
Investigating the frequency and distribution of small subgraphs with a few nodes/edges, i.e., motifs, is an effective analysis method for static networks. Motif-driven analysis is also useful for temporal networks where the spectrum of motifs is significantly larger due to the additional temporal information on edges. This variety makes it challenging to design a temporal motif model that can consider all aspects of temporality. In the literature, previous works have introduced various models that handle different characteristics. In this work, we compare the existing temporal motif models and evaluate the facets of temporal networks that are overlooked in the literature. We first survey four temporal motif models and highlight their differences. Then, we evaluate the advantages and limitations of these models with respect to the temporal inducedness and timing constraints. In addition, we suggest a new lens, event pairs, to investigate temporal correlations. We believe that our comparative survey and extensive evaluation will catalyze the research on temporal network motif models.
We perform laboratory experiments to elucidate the role of historical information in games involving human coordination. Our approach follows prior work studying human network coordination using the task of graph coloring. We first motivate this research by showing empirical evidence that the resolution of coloring conflicts is dependent upon the recent local history of that conflict. We also conduct two tailored experiments to manipulate the game history that can be used by humans in order to determine (i) whether humans use historical information, and (ii) whether they use it effectively. In the first variant, during the course of each coloring task, the network positions of the subjects were periodically swapped while maintaining the global coloring state of the network. In the second variant, participants completed a series of 2-coloring tasks, some of which were restarts from checkpoints of previous tasks. Thus, the participants restarted the coloring task from a point in the middle of a previous task without knowledge of the history that led to that point. We report on the game dynamics and average completion times for the diverse graph topologies used in the swap and restart experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا