Do you want to publish a course? Click here

On the experimental verification of quantum complexity in linear optics

241   0   0.0 ( 0 )
 Added by Anthony Laing
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first quantum technologies to solve computational problems that are beyond the capabilities of classical computers are likely to be devices that exploit characteristics inherent to a particular physical system, to tackle a bespoke problem suited to those characteristics. Evidence implies that the detection of ensembles of photons, which have propagated through a linear optical circuit, is equivalent to sampling from a probability distribution that is intractable to classical simulation. However, it is probable that the complexity of this type of sampling problem means that its solution is classically unverifiable within a feasible number of trials, and the task of establishing correct operation becomes one of gathering sufficiently convincing circumstantial evidence. Here, we develop scalable methods to experimentally establish correct operation for this class of sampling algorithm, which we implement with two different types of optical circuits for 3, 4, and 5 photons, on Hilbert spaces of up to 50,000 dimensions. With only a small number of trials, we establish a confidence >99% that we are not sampling from a uniform distribution or a classical distribution, and we demonstrate a unitary specific witness that functions robustly for small amounts of data. Like the algorithmic operations they endorse, our methods exploit the characteristics native to the quantum system in question. Here we observe and make an application of a bosonic clouding phenomenon, interesting in its own right, where photons are found in local groups of modes superposed across two locations. Our broad approach is likely to be practical for all architectures for quantum technologies where formal verification methods for quantum algorithms are either intractable or unknown.



rate research

Read More

The study of non-equilibrium physics from the perspective of the quantum limits of thermodynamics and fluctuation relations can be experimentally addressed with linear optical systems. We discuss recent experimental investigations in this scenario and present new proposed schemes and the potential advances they could bring to the field.
Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.
101 - J. Stockton , M. Armen , 2002
We discuss the unique capabilities of programmable logic devices (PLDs) for experimental quantum optics and describe basic procedures of design and implementation. Examples of advanced applications include optical metrology and feedback control of quantum dynamical systems. As a tutorial illustration of the PLD implementation process, a field programmable gate array (FPGA) controller is used to stabilize the output of a Fabry-Perot cavity.
Bell nonlocality between distant quantum systems---i.e., joint correlations which violate a Bell inequality---can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell nonlocality requires high detection efficiencies, and is not robust to the typical transmission losses that occur in long distance applications. In contrast, quantum steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. We present device-independent steering protocols that remove this need for trust, even when Bell nonlocality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report an experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of $3.6times 10^6$ states in one verification round, limiting the forging probability to $10^{-7}$ based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا