Do you want to publish a course? Click here

Important Roles of Te 5p and Ir 5d Spin-orbit Interactions on the Multi-band Electronic Structure of Triangular Lattice Superconductor Ir1-xPtxTe2

544   0   0.0 ( 0 )
 Added by Daiki Ootsuki
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an angle-resolved photoemission spectroscopy (ARPES) study on a triangular lattice superconductor Ir$_{1-x}$Pt$_{x}$Te$_2$ in which the Ir-Ir or Te-Te bond formation, the band Jahn-Teller effect, and the spin-orbit interaction are cooperating and competing with one another. The Fermi surfaces of the substituted system are qualitatively similar to the band structure calculations for the undistorted IrTe$_2$ with an upward chemical potential shift due to electron doping. A combination of the ARPES and the band structure calculations indicates that the Te $5p$ spin-orbit interaction removes the $p_x/p_y$ orbital degeneracy and induces $p_x pm ip_y$ type spin-orbit coupling near the A point. The inner and outer Fermi surfaces are entangled by the Te $5p$ and Ir $5d$ spin-orbit interactions which may provide exotic superconductivity with singlet-triplet mixing.



rate research

Read More

The IrTe2 transition metal dichalcogenide undergoes a series of structural and electronic phase transitions when doped with Pt. The nature of each phase and the mechanism of the phase transitions have attracted much attention. In this paper, we report scanning tunneling microscopy and spectroscopy studies of Pt doped IrTe2 with varied Pt contents. In pure IrTe2, we find that the ground state has a 1/6 superstructure, and the electronic structure is inconsistent with Fermi surface nesting induced charge density wave order. Upon Pt doping, the crystal structure changes to a 1/5 superstructure and then to a quasi-periodic hexagonal phase. First principles calculations show that the superstructures and electronic structures are determined by the global chemical strain and local impurity states that can be tuned systematically by Pt doping.
129 - D. Ootsuki , Y. Wakisaka , S. Pyon 2012
We have studied electronic structure of triangular lattice Ir$_{1-x}$Pt$_x$Te$_2$ superconductor using photoemission spectroscopy and model calculations. Ir $4f$ core-level photoemission spectra show that Ir $5d$ $t_{2g}$ charge modulation established in the low temperature phase of IrTe$_2$ is suppressed by Pt doping. This observation indicates that the suppression of charge modulation is related to the emergence of superconductivity. Valence-band photoemission spectra of IrTe$_2$ suggest that the Ir $5d$ charge modulation is accompanied by Ir $5d$ orbital reconstruction. Based on the photoemission results and model calculations, we argue that the orbitally-induced Peierls effect governs the charge and orbital instability in the Ir$_{1-x}$Pt$_x$Te$_2$.
We have studied the nature of the three-dimensional multi-band electronic structure in the twodimensional triangular lattice Ir1-xPtxTe2 (x=0.05) superconductor using angle-resolved photoemission spectroscopy (ARPES), x-ray photoemission spectroscopy (XPS) and band structure calculation. ARPES results clearly show a cylindrical (almost two-dimensional) Fermi surface around the zone center. Near the zone boundary, the cylindrical Fermi surface is truncated into several pieces in a complicated manner with strong three-dimensionality. The XPS result and the band structure calculation indicate that the strong Te 5p-Te 5p hybridization between the IrTe2 triangular lattice layers is responsible for the three-dimensionality of the Fermi surfaces and the intervening of the Fermi surfaces observed by ARPES.
We have examined theoretically the electronic band structure and Fermi surface of tetragonal low-temperature superconductor Bi2Pd. Our main results are that (i) the Pd 4d and Bi 6p states determine the main peculiarities of the multiple-sheets FS topology, thus for this material the complicated superconducting gap structure with different energy gaps on different FS sheets should be assumed; (ii) the effect of the spin-orbit coupling is of minor importance for the distributions of the near-Fermi electronic states; and (iii) this phase adopts 3D-like type owing to the directional bonds between the adjacent atomic sheets.
We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the Lowdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmetry lines. Such release of the band degeneracy naturally determines a reconstruction of the Fermi surface, including the possibility of changing the number of pockets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا