No Arabic abstract
We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation, and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and non-paraxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field-scanning-optical-microscope.
We examine, both experimentally and theoretically, an interaction of tightly focused polarized light with a slit on a metal surface supporting plasmon-polariton modes. Remarkably, this simple system can be highly sensitive to the polarization of the incident light and offers a perfect quantum-weak-measurement tool with a built-in post-selection in the plasmon-polariton mode. We observe the plasmonic spin Hall effect in both coordinate and momentum spaces which is interpreted as weak measurements of the helicity of light with real and imaginary weak values determined by the input polarization. Our experiment combines advantages of (i) quantum weak measurements, (ii) near-field plasmonic systems, and (iii) high-numerical aperture microscopy in employing spin-orbit interaction of light and probing light chirality.
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high harmonic generation, and THz generation.
In this work, we present a novel technique to directly measure the phase shift of the optical signal scattered by single plasmonic nanoparticles in a diffraction-limited laser focus. We accomplish this by equipping an inverted confocal microscope with a Michelson interferometer and scanning single nanoparticles through the focal volume while recording interferograms of the scattered and a reference wave for each pixel. For the experiments, lithographically prepared gold nanorods where used, since their plasmon resonances can be controlled via their aspect ratio. We have developed a theoretical model for image formation in confocal scattering microscopy for nanoparticles considerably smaller than the diffraction limited focus We show that the phase shift observed for particles with different longitudinal particle plasmon resonances can be well explained by the harmonic oscillator model. The direct measurement of the phase shift can further improve the understanding of the elastic scattering of individual gold nanoparticles with respect to their plasmonic properties.
During the last 2 years, it was shown that an electromagnetic beam configuration can be bent after propagation through an asymmetrically shaped (Janus) dielectric particle, which adds a new degree of simplicity for generation of a curved light beam. This effect is termed photonic hook (PH) and differs from Airy-family beams. PH features the smallest curvature radius of electromagnetic waves ever reported which is about 2 times smaller than the wavelength of the electromagnetic wave. The nature of a photonic hook is a the dispersion of the phase velocity of the waves inside a trapezoid or composed particle, resulting in an interference afterwards.
Gradient metasurfaces have been extensively applied in recent years for enabling an unprecedented control of light beam over thin optical components. However, these metasurfaces suffer from low efficiency when it comes to bending light with large angle and high fabrication demand when it requires fine discretion. In this work, we investigate the all-dielectric metagrating based on mie-type resonances interference, allowing extraordinary optical diffraction for beam steering with ultralarge angle. It is found that the coupling inside and among lattice of metagrating can tune the exciting state of electric and magnetic resonances including both fundamental dipoles and high-order multipoles, leading to ideal asymmetrical scattering pattern for redistributing the energy between the diffraction channels at will. The participation of quadrupole and hexapole not only significantly enhance the working efficiency, but also bring distinctive possibilities for wave manipulation which cannot be reached by dipoles. Utilizing a thin array of silicon rods, large-angle negative refraction and reflection are demonstrated with almost unity efficiency under both polarizations. Compared with conventional metasurfaces, such an all-dielectric mategrating has the merits of high flexibility, high efficiency and low fabrication demand. The strong coupling and prosperous interactions among multipoles may behave as a cornerstone for broad range of wavefront control and offer an effective solution for various on-chip optical wave control such as bending, focusing, filtering and sensing.