Do you want to publish a course? Click here

GL^+(2,R)-orbits in Prym eigenform loci

230   0   0.0 ( 0 )
 Added by Erwan Lanneau
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

This paper is devoted to the classification of GL^+(2,R)-orbit closures of surfaces in the intersection of the Prym eigenform locus with various strata of quadratic differentials. We show that the following dichotomy holds: an orbit is either closed or dense in a connected component of the Prym eigenform locus. The proof uses several topological properties of Prym eigenforms, which are proved by the authors in a previous work. In particular the tools and the proof are independent of the recent results of Eskin-Mirzakhani-Mohammadi. As an application we obtain a finiteness result for the number of closed GL^+(2,R)-orbits (not necessarily primitive) in the Prym eigenform locus Prym_D(2,2) for any fixed D that is not a square.



rate research

Read More

This paper is devoted to the classification of connected components of Prym eigenform loci in the strata H(2,2)^odd and H(1,1,2) in the Abelian differentials bundle in genus 3. These loci, discovered by McMullen are GL^+(2,R)-invariant submanifolds (of complex dimension 3) that project to the locus of Riemann surfaces whose Jacobian variety has a factor admitting real multiplication by some quadratic order Ord_D. It turns out that these subvarieties can be classified by the discriminant D of the corresponding quadratic orders. However there algebraic varieties are not necessarily irreducible. The main result we show is that for each discriminant D the corresponding locus has one component if D is congruent to 0 or 4 mod 8, two components if D is congruent to 1 mod 8, and is empty otherwise. Our result contrasts with the case of Prym eigenform loci in the strata H(1,1) (studied by McMullen) that is connected for every discriminant D.
The minimal stratum in Prym loci have been the first source of infinitely many primitive, but not algebraically primitive Teichmueller curves. We show that the stratum Prym(2,1,1) contains no such Teichmueller curve and the stratum Prym(2,2) at most 92 such Teichmueller curves. This complements the recent progress establishing general -- but non-effective -- methods to prove finiteness results for Teichmueller curves and serves as proof of concept how to use the torsion condition in the non-algebraically primitive case.
This paper deals with Prym eigenforms which are introduced previously by McMullen. We prove several results on the directional flow on those surfaces, related to complete periodicity (introduced by Calta). More precisely we show that any homological direction is algebraically periodic, and any direction of a regular closed geodesic is a completely periodic direction. As a consequence we draw that the limit set of the Veech group of every Prym eigenform in some Prym loci of genus 3,4, and 5 is either empty, one point, or the full circle at infinity. We also construct new examples of translation surfaces satisfying the topological Veech dichotomy. As a corollary we obtain new translation surfaces whose Veech group is infinitely generated and of the first kind.
This paper is devoted to the classification of the infinite families of Teichmuller curves generated by Prym eigenforms of genus 3 having a single zero. These curves were discovered by McMullen. The main invariants of our classification is the discriminant D of the corresponding quadratic order, and the generators of this order. It turns out that for D sufficiently large, there are two Teichmueller curves when D=1 modulo 8, only one Teichmueller curve when D=0,4 modulo 8, and no Teichmueller curves when D=5 modulo 8. For small values of D, where this classification is not necessarily true, the number of Teichmueller curves can be determined directly. The ingredients of our proof are first, a description of these curves in terms of prototypes and models, and then a careful analysis of the combinatorial connectedness in the spirit of McMullen. As a consequence, we obtain a description of cusps of Teichmueller curves given by Prym eigenforms. We would like also to emphasis that even though we have the same statement compared to, when D=1 modulo 8, the reason for this disconnectedness is different. The classification of these Teichmueller curves plays a key role in our investigation of the dynamics of SL(2,R) on the intersection of the Prym eigenform locus with the stratum H(2,2), which is the object of a forthcoming paper.
Given an oriented surface of positive genus with finitely many punctures, we classify the finite orbits of the mapping class group action on the moduli space of semisimple complex special linear two dimensional representations of the fundamental group of the surface. For surfaces of genus at least two, such orbits correspond to homomorphisms with finite image. For genus one, they correspond to the finite or special dihedral representations. We also obtain an analogous result for bounded orbits in the moduli space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا