Do you want to publish a course? Click here

Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy gamma-rays

136   0   0.0 ( 0 )
 Added by Pierre Colin
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The radio galaxy NGC 1275, recently identified as a very high energy (VHE, >100 GeV) gamma-ray emitter by MAGIC, is one of the few non-blazar AGN detected in the VHE regime. In order to better understand the origin of the gamma-ray emission and locate it within the galaxy, we studied contemporaneous multi-frequency observations of NGC 1275 and modeled the overall spectral energy distribution (SED). We analyzed unpublished MAGIC observations carried out between Oct. 2009 and Feb. 2010, and the previously published ones taken between Aug. 2010 and Feb. 2011. We studied the multi-band variability and correlations by analyzing data of Fermi-LAT (0.1-100 GeV), as well as Chandra (X-ray), KVA (optical) and MOJAVE (radio) data taken during the same period. Using customized Monte Carlo simulations corresponding to early MAGIC stereo data, we detect NGC 1275 also in the earlier campaign. The flux level and energy spectra are similar to the results of the second campaign. The monthly light curve >100 GeV shows a hint of variability at the 3.6 sigma level. In the Fermi-LAT band, both flux and spectral shape variabilities are reported. The optical light curve is variable and shows a clear correlation with the gamma-ray flux >100 MeV. In radio, 3 compact components are resolved in the innermost part of the jet. One of them shows a similar trend as the LAT and KVA light curves. The 0.1-650 GeV spectra measured simultaneously with MAGIC and Fermi-LAT can be well fitted either by a log-parabola or by a power-law with a sub-exponential cutoff for both campaigns. A single-zone synchrotron-self-Compton model, with an electron spectrum following a power-law with an exponential cutoff, can explain the broadband SED and the multi-band behavior of the source. However, this model suggests an untypical low bulk-Lorentz factor or a velocity alignment closer to the line of sight than the pc-scale radio jet.



rate research

Read More

We report on the detection of very-high energy (VHE, E>100 GeV) gamma-ray emission from NGC 1275, the central radio galaxy of the Perseus cluster of galaxies. The source has been detected by the MAGIC telescopes with a statistical significance of 6.6 sigma above 100 GeV in 46 hr of stereo observations carried out between August 2010 and February 2011. The measured differential energy spectrum between 70 GeV and 500 GeV can be described by a power law with a steep spectral index of Gamma=-4.1+/-0.7stat+/-0.3syst, and the average flux above 100 GeV is F_{gamma}=(1.3+/-0.2stat+/-0.3syst) x 10^-11 cm^-2 s^-1. These results, combined with the power-law spectrum measured in the first two years of observations by the Fermi-LAT above 100 MeV, with a spectral index of Gamma ~ -2.1, strongly suggest the presence of a break or cut-off around tens of GeV in the NGC 1275 spectrum. The light curve of the source above 100 GeV does not show hints of variability on a month time scale. Finally, we report on the nondetection in the present data of the radio galaxy IC 310, previously discovered by the Fermi-LAT and MAGIC. The derived flux upper limit F^{U.L.}_{gamma} (>300 GeV)=1.2 x 10^-12 cm^-2 s^-1 is a factor ~ 3 lower than the mean flux measured by MAGIC between October 2009 and February 2010, thus confirming the year time-scale variability of the source at VHE.
We analyzed Suzaku/XIS data of 2006--2015 observations of a gamma-ray emitting radio galaxy NGC 1275, and brightening of the nucleus in the X-ray band was found in 2013--2015, correlating with GeV Gamma-ray brightening. This is the first evidence of variability with correlation between GeV gamma-ray and X-ray for NGC 1275. We also analyzed Swift/XRT data of NGC 1275, and found that X-ray was flaring by a factor of $sim$5 in several days in 2006, 2010, and 2013. The X-ray spectrum during the flare was featureless and somewhat steeper with a photon index of $sim$2 against $sim$1.7 in the normal state, indicating that a synchrotron component became brighter. A large Xray to GeV gamma-ray flux ratio in the flare could be explained by the shock-in-jet scenario. On the other hand, a long-term gradual brightening of radio, X-ray, and GeV gamma-ray with a larger gamma-ray amplitude could be origin of other than internal shocks, and then we discuss some possibilities.
NGC 1275 is a gamma-ray-emitting radio galaxy at the center of the Perseus cluster. Its multi-wavelength spectrum is similar to that of blazers, and thus a jet-origin of gamma-ray emissions is believed. In the optical and X-ray region, NGC 1275 also shows a bright core, but their origin has not been understood, since a disk emission is not ruled out. In fact, NGC 1275 exhibits optical broad emission lines and a X-ray Fe-K line, which are typical for Seyfert galaxies. In our precious studies of NGC 1275 with Suzaku/XIS, no X-ray time variability was found from 2006 to 2011, regardless of moderate gamma-ray variability observed by {it Fermi}-LAT~cite{Yamazaki}. We have continued monitoring observations of NGC 1275 with Suzaku/XIS. In 2013-2014, MeV/GeV gams-ray flux of NGC 1275 gradually increased and reached the maximum at the beginning of 2014. Correlated with this recent gamma-ray activity, we found that X-ray flux also increased, and this is the first evidence of X-ray variability of NGC 1275. Following these results, we discuss the emission component during the time variability, but we cannot decide the origin of X-ray variability correlating with gamma-ray. Therefore, for future observation, it is important to observe NGC 1275 by using Fermi gamma-ray, XMM-Newton, NuStar, ASTRO-H X-ray, CTA TeV gamma-ray and Kanata optical telescope.
The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei (AGN) with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope (LAT) result.
203 - Paola Grandi 2011
We review the high energy properties of Misaligned AGNs associated with gamma-ray sources detected by Fermi in 24 months of survey. Most of them are nearby emission low power radio galaxies (i.e FRIs) which probably have structured jets. On the contrary, high power radio sources (i.e FRIIs) with GeV emission are rare. The small number of FRIIs does not seem to be related to their higher redshifts. Assuming proportionality between the radio core flux and the gamma-ray flux, several of them are expected to be bright enough to be detected above 100 MeV in spite of their distance. We suggest that beaming/jet structural differences are responsible for the detection rate discrepancy observed between FRIs and FRIIs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا