Do you want to publish a course? Click here

Suzaku X-Ray Monitoring of Gamma-Ray-Emitting Radio Galaxy, NGC 1275

132   0   0.0 ( 0 )
 Added by Ikumi Edahiro
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 1275 is a gamma-ray-emitting radio galaxy at the center of the Perseus cluster. Its multi-wavelength spectrum is similar to that of blazers, and thus a jet-origin of gamma-ray emissions is believed. In the optical and X-ray region, NGC 1275 also shows a bright core, but their origin has not been understood, since a disk emission is not ruled out. In fact, NGC 1275 exhibits optical broad emission lines and a X-ray Fe-K line, which are typical for Seyfert galaxies. In our precious studies of NGC 1275 with Suzaku/XIS, no X-ray time variability was found from 2006 to 2011, regardless of moderate gamma-ray variability observed by {it Fermi}-LAT~cite{Yamazaki}. We have continued monitoring observations of NGC 1275 with Suzaku/XIS. In 2013-2014, MeV/GeV gams-ray flux of NGC 1275 gradually increased and reached the maximum at the beginning of 2014. Correlated with this recent gamma-ray activity, we found that X-ray flux also increased, and this is the first evidence of X-ray variability of NGC 1275. Following these results, we discuss the emission component during the time variability, but we cannot decide the origin of X-ray variability correlating with gamma-ray. Therefore, for future observation, it is important to observe NGC 1275 by using Fermi gamma-ray, XMM-Newton, NuStar, ASTRO-H X-ray, CTA TeV gamma-ray and Kanata optical telescope.



rate research

Read More

We analyzed Suzaku/XIS data of 2006--2015 observations of a gamma-ray emitting radio galaxy NGC 1275, and brightening of the nucleus in the X-ray band was found in 2013--2015, correlating with GeV Gamma-ray brightening. This is the first evidence of variability with correlation between GeV gamma-ray and X-ray for NGC 1275. We also analyzed Swift/XRT data of NGC 1275, and found that X-ray was flaring by a factor of $sim$5 in several days in 2006, 2010, and 2013. The X-ray spectrum during the flare was featureless and somewhat steeper with a photon index of $sim$2 against $sim$1.7 in the normal state, indicating that a synchrotron component became brighter. A large Xray to GeV gamma-ray flux ratio in the flare could be explained by the shock-in-jet scenario. On the other hand, a long-term gradual brightening of radio, X-ray, and GeV gamma-ray with a larger gamma-ray amplitude could be origin of other than internal shocks, and then we discuss some possibilities.
The radio source 1146+596 is hosted by an elliptical/S0 galaxy NGC,3894, with a low-luminosity active nucleus. The radio structure is compact, suggesting a very young age of the jets in the system. Recently, the source has been confirmed as a high-energy (HE, $>0.1$,GeV) $gamma$-ray emitter, in the most recent accumulation of the {it Fermi} Large Area Telescope (LAT) data. Here we report on the analysis of the archival {it Chandra} X-ray Observatory data for the central part of the galaxy, consisting of a single 40,ksec-long exposure. We have found that the core spectrum is best fitted by a combination of an ionized thermal plasma with the temperature of $simeq 0.8$,keV, and a moderately absorbed power-law component (photon index $Gamma = 1.4pm 0.4$, hydrogen column density $N_{rm H}/10^{22}$,cm$^{-2}$,$= 2.4pm 0.7$). We have also detected the iron K$alpha$ line at $6.5pm 0.1$,keV, with a large equivalent width of EW,$= 1.0_{-0.5}^{+0.9}$,keV. Based on the simulations of the {it Chandra}s Point Spread Function (PSF), we have concluded that, while the soft thermal component is extended on the scale of the galaxy host, the hard X-ray emission within the narrow photon energy range 6.0--7.0,keV originates within the unresolved core (effectively the central kpc radius). The line is therefore indicative of the X-ray reflection from a cold neutral gas in the central regions of NGC,3894. We discuss the implications of our findings in the context of the X-ray Baldwin effect. NGC,3894 is the first young radio galaxy detected in HE $gamma$-rays with the iron K$alpha$ line.
Broadband spectrum of AGN consists of multiple components such as jet emission and accretion disk emission. Temporal correlation study is useful to understand emission components and their physical origins. We have performed optical monitoring using Kanata telescope for 4 radio galaxies and 6 radio-loud Narrow-Line Seyfert 1 (RL-NLSy1): 2 gamma-ray-loud RL-NLSy1s, 1H 0323+342 and PMN J0948+0022, and 4 gamma-ray-quiet RL-NLSy1s. From these results, it is suggested that RL-NLSy1s show a disk-dominant phase and a jet-dominant phase in the optical band, but it is not well correlated with brightness.
We report the discovery of high-energy (E>100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma ray Space Telescope. The positional center of the gamma-ray source is only ~3 away from the NGC 1275 nucleus, well within the 95% LAT error circle of ~5.The spatial distribution of gamma-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F_gamma = (2.10+-0.23)x 10^{-7} ph (>100 MeV) cm^{-2} s^{-1} and Gamma = 2.17+-0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period.Previous EGRET observations gave an upper limit of F_gamma < 3.72x 10 ^{-8} ph (>100 MeV) cm^{-2} s^{-1} to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.
We analyze the ultraviolet (UV) and X-ray data of NGC 1275 obtained with {it Swift}/UVOT, XRT, BAT and {it Fermi} Large Area Telescope over about 10 years to investigate the origin of the nuclear emission from NGC 1275. We confirm that the UV and soft/hard X-ray fluxes gradually increased along with the GeV gamma rays. At times, short-term variations in the UV or soft X-ray spectral regions showed rapid variations correlated with the GeV gamma-rays. However there was no significant correlation between the UV and soft X-rays. The UV spectrum had a narrow spectral shape that could be represented by single-temperature blackbody radiation. These results could possibly indicate that the long-term variability of UV and X-ray emissions is caused by the jet, while the emissions from the accretion disk contribute to the UV and X-ray bands to some extent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا