Do you want to publish a course? Click here

A Cs-Based Optical Frequency Measurement Using Cross-Linked Optical and Microwave Oscillators

128   0   0.0 ( 0 )
 Added by Christian Tamm
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a measurement of the frequency of the 2S1/2(F = 0) - 2D3/2(F = 2) transition of 171Yb+ at the wavelength 436 nm (frequency 688 THz), using a single Yb+ ion confined in a Paul trap and two caesium fountains as references. In one of the fountains, the frequency of the microwave oscillator that interrogates the caesium atoms is stabilized by the laser that excites the Yb+ reference transition with a linewidth in the hertz range. The stability is transferred to the microwave oscillator with the use of a fiber laser based optical frequency comb generator that also provides the frequency conversion for the absolute frequency measurement. The frequency comb generator is configured as a transfer oscillator so that fluctuations of the pulse repetition rate and of the carrier offset frequency do not degrade the stability of the frequency conversion. The phase noise level of the generated ultrastable microwave signal is comparable to that of a cryogenic sapphire oscillator. For fountain operation with optical molasses loaded from a laser cooled atomic beam source, we obtain a stability corresponding to a fractional Allan deviation of $4.1times 10^{-14} (tau/text{s})^{-1/2}$. With the molasses loaded from thermal vapor and an averaging time of 65 h, we measure the frequency of the Yb+ transition with a relative statistical uncertainty of $2.8times10^{-16}$ and a systematic uncertainty of $5.9times10^{-16}$. The frequency was also simultaneously measured with the second fountain that uses a quartz-based interrogation oscillator. The unperturbed frequency of the Yb+ transition is realized with an uncertainty of $1.1times10^{-16}$ that mainly results from the uncertainty of the blackbody shift at the operating temperature near 300 K. The transition frequency of 688 358 979 309 307.82(36) Hz, measured with the two fountains, is in good agreement with previous results.



rate research

Read More

126 - Bruno Chanteau 2012
We have built a frequency chain which enables to measure the absolute frequency of a laser emitting in the 28-31 THz frequency range and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb and an ultrastable 1.55 $mu$m frequency reference signal, transferred from LNE-SYRTE to LPL through an optical link. We are now progressing towards the stabilization of the mid-IR laser via the frequency comb and the extension of this technique to quantum cascade lasers. Such a development is very challenging for ultrahigh resolution molecular spectroscopy and fundamental tests of physics with molecules.
Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a FPGA-based phase analyzer to investigate these effects and conducted measurements on two frequency standards. For the caesium fountain PTB-CSF2 we were able to exclude phase variations of the microwave source at the level of a few $mu$rad, corresponding to relative frequency shifts of less than 10$^{-16}$. In the optical domain, we investigated phase variations in PTBs Yb$^+$ optical frequency standard and made detailed measurements of AOM chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than 10$^{-18}$.
We demonstrate a precision frequency measurement using a phase-stabilized 120-km optical fiber link over a physical distance of 50 km. The transition frequency of the 87Sr optical lattice clock at the University of Tokyo is measured to be 429228004229874.1(2.4) Hz referenced to international atomic time (TAI). The measured frequency agrees with results obtained in Boulder and Paris at a 6*10^-16 fractional level, which matches the current best evaluations of Cs primary frequency standards. The results demonstrate the excellent functions of the intercity optical fibre link, and the great potential of optical lattice clocks for use in the redefinition of the second.
We report the binding energy of $^{87}$Rb$^{133}$Cs molecules in their rovibrational ground state measured using an offset-free optical frequency comb based on difference frequency generation technology. We create molecules in the absolute ground state using stimulated Raman adiabatic passage (STIRAP) with a transfer efficiency of 88%. By measuring the absolute frequencies of our STIRAP lasers, we find the energy-level difference from an initial weakly-bound Feshbach state to the rovibrational ground state with a resolution of 5 kHz over an energy-level difference of more than 114 THz; this lets us discern the hyperfine splitting of the ground state. Combined with theoretical models of the Feshbach state binding energies and ground-state hyperfine structure, we determine a zero-field binding energy of $htimes114,268,135,237(5)(50)$ kHz. To our knowledge, this is the most accurate determination to date of the dissociation energy of a molecule.
Optical frequency standards, lasers stabilized to atomic or molecular transitions, are widely used in length metrology and laser ranging, provide a backbone for optical communications and lie at the heart of next-generation optical atomic clocks. Here we demonstrate a compact, low-power optical frequency standard based on the Doppler-free, two-photon transition in rubidium-87 at 778 nm implemented on a micro-optics breadboard. The optical standard achieves a fractional frequency stability of 2.9x10$^{-12}$/$sqrt{tau}$ for averaging times $tau$ less than 10$^{3}$ s, has a volume of $approx$35 cm$^3$ and operates on $approx$450 mW of electrical power. These results demonstrate a key step towards the development of compact optical clocks and the broad dissemination of SI-traceable wavelength references.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا