Do you want to publish a course? Click here

MOND and IMF variations in early-type galaxies from $ATLAS^{3D}$

536   0   0.0 ( 0 )
 Added by Crescenzo Tortora
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

MOdified Newtonian dynamics (MOND) represents a phenomenological alternative to dark matter (DM) for the missing mass problem in galaxies and clusters of galaxies. We analyze the central regions of a local sample of $sim 220$ early-type galaxies from the $rm ATLAS^{3D}$ survey, to see if the data can be reproduced without recourse to DM. We estimate dynamical masses in the MOND context through Jeans analysis, and compare to $rm ATLAS^{3D}$ stellar masses from stellar population synthesis. We find that the observed stellar mass--velocity dispersion relation is steeper than expected assuming MOND with a fixed stellar initial mass function (IMF) and a standard value for the acceleration parameter $a_{rm 0}$. Turning from the space of observables to model space, a) fixing the IMF, a universal value for $a_{rm 0}$ cannot be fitted, while, b) fixing $a_{rm 0}$ and leaving the IMF free to vary, we find that it is lighter (Chabrier-like) for low-dispersion galaxies, and heavier (Salpeter-like) for high dispersions. This MOND-based trend matches inferences from Newtonian dynamics with DM, and from detailed analysis of spectral absorption lines, adding to the converging lines of evidence for a systematically-varying IMF.



rate research

Read More

Much of our understanding of modern astrophysics rest on the notion that the Initial Mass Function (IMF) is universal. Our observations of a sample of HI-selected galaxies in the light of H-alpha and the far-ultraviolet (FUV) challenge this result. The flux ratio H-alpha/FUV from these star formation tracers shows strong correlations with surface-brightness in H-alpha and the R band: Low Surface Brightness galaxies have lower H-alpha/FUV ratios compared to High Surface Brightness galaxies as well as compared to expectations from equilibrium models of constant star formation rate using commonly favored IMF parameters. I argue against recent claims in the literature that attribute these results to errors in the dust corrections, the micro-history of star formation, sample issues or escaping ionizing photons. Instead, the most plausible explanation for the correlations is the systematic variations of the upper mass limit and/or the slope of the IMF. I present a plausible physical scenario for producing the IMF variations, and suggest future research directions.
215 - Carsten Weidner 2013
Observational studies are showing that the galaxy-wide stellar initial mass function are top-heavy in galaxies with high star-formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs > 10 Msol yr^-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher M/L ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar initial mass function (IMF). For the Milky Way, the IGIMF yields very good agreement with the disk- and the bulge-IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a pc and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index beta of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.
Using new long-slit spectroscopy obtained with X-Shooter at ESO-VLT, we study, for the first time, radial gradients of optical and Near-Infrared IMF-sensitive features in a representative sample of galaxies at the very high-mass end of the galaxy population. The sample consists of seven early-type galaxies (ETGs) at $zsim0.05$, with central velocity dispersion in the range $300<sigma<350$km/s. Using state-of-art stellar population synthesis models, we fit a number of spectral indices, from different chemical species (including TiOs and Na indices), to constrain the IMF slope (i.e. the fraction of low-mass stars), as a function of galactocentric distance, over a radial range out to $sim4$kpc. ETGs in our sample show a significant correlation of IMF slope and surface mass density. The bottom-heavy population (i.e. an excess of low-mass stars in the IMF) is confined to central galaxy regions with surface mass density above $sim 10^{10} M_odot kpc^{-2}$, or, alternatively, within a characteristic radius of $sim2$~kpc. Radial distance, in physical units, and surface mass density, are the best correlators to IMF variations, with respect to other dynamical (e.g. velocity dispersion) and stellar population (e.g. metallicity) properties. Our results for the most massive galaxies suggest that there is no single parameter} that fully explains variations in the stellar IMF, but IMF radial profiles at z$sim$0 rather result from the complex formation and mass accretion history of galaxy inner and outer regions.
We here present the first spatially-resolved study of the IMF in external galaxies derived using a dynamical tracer of the mass-to-light ratio. We use the kinematics of relaxed molecular gas discs in seven early-type galaxies (ETGs) selected from the ATLAS3D survey to dynamically determine mass-to-light ratio (M/L) gradients. These M/L gradients are not very strong in the inner parts of these objects, and galaxies that do show variations are those with the highest specific star formation rates. Stellar population parameters derived from star formation histories are then used in order to estimate the stellar initial mass function function (IMF) mismatch parameter, and shed light on its variation within ETGs. Some of our target objects require a light IMF, otherwise their stellar population masses would be greater than their dynamical masses. In contrast, other systems seem to require heavier IMFs to explain their gas kinematics. Our analysis again confirms that IMF variation seems to be occurring within massive ETGs. We find good agreement between our IMF normalisations derived using molecular gas kinematics and those derived using other techniques. Despite this, we do not see find any correlation between the IMF normalisation and galaxy dynamical properties or stellar population parameters, either locally or globally. In the future larger studies which use molecules as tracers of galaxy dynamics can be used to help us disentangle the root cause of IMF variation.
[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation conditions in 13 of our 18 ETGs appear analogous to those in the centre of the Milky Way. Such results have never been obtained before for ETGs and open a new window to explore further star-formation processes in the Universe. The conclusions drawn should nevertheless be considered carefully, as they are based on a limited number of observations and on a simple model. In the near future, with higher CO transition observations, it should be possible to better identify the various gas components present in ETGs, as well as more precisely determine their associated physical conditions. To achieve these goals, we show here from our theoretical study, that mid-J CO lines (such as the $^{12}$CO(6-5) line) are particularly useful.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا