Do you want to publish a course? Click here

The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies

278   0   0.0 ( 0 )
 Added by Bayet Estelle
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation conditions in 13 of our 18 ETGs appear analogous to those in the centre of the Milky Way. Such results have never been obtained before for ETGs and open a new window to explore further star-formation processes in the Universe. The conclusions drawn should nevertheless be considered carefully, as they are based on a limited number of observations and on a simple model. In the near future, with higher CO transition observations, it should be possible to better identify the various gas components present in ETGs, as well as more precisely determine their associated physical conditions. To achieve these goals, we show here from our theoretical study, that mid-J CO lines (such as the $^{12}$CO(6-5) line) are particularly useful.



rate research

Read More

We have carried out a survey for 12CO J=1-0 and J=2-1 emission in the 260 early-type galaxies of the volume-limited Atlas3D sample, with the goal of connecting their star formation and assembly histories to their cold gas content. This is the largest volume-limited CO survey of its kind and is the first to include many Virgo Cluster members. Sample members are dynamically hot galaxies with a median stellar mass 3times 10^{10} Msun; they are selected by morphology rather than colour, and the bulk of them lie on the red sequence. The overall CO detection rate is 56/259 = 0.22 error 0.03, with no dependence on K luminosity and only a modest dependence on dynamical mass. There are a dozen CO detections among the Virgo Cluster members; statistical analysis of their H_2 mass distributions and their dynamical status within the cluster shows that the clusters influence on their molecular masses is subtle at best, even though (unlike spirals) they seem to be virialized within the cluster. We suggest that the cluster members have retained their molecular gas through several Gyr residences in the cluster. There are also a few extremely CO-rich early-type galaxies with H_2 masses >= 10^9 Msun, and these are in low density environments. We do find a significant trend between molecular content and the stellar specific angular momentum. The galaxies of low angular momentum also have low CO detection rates, suggesting that their formation processes were more effective at destroying molecular gas or preventing its re-accretion. We speculate on the implications of these data for the formation of various sub-classes of early-type galaxies.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
Surveying eighteen 12CO-bright galaxies from the ATLAS3D early-type galaxy sample with the Institut de Radio Astronomie Millimetrique (IRAM) 30m telescope, we detect 13CO(1-0) and 13CO(2-1) in all eighteen galaxies, HCN(1-0) in 12/18 and HCO+(1-0) in 10/18. We find that the line ratios 12CO(1-0)/13CO(1-0) and 12CO(1-0)/HCN(1-0) are clearly correlated with several galaxy properties: total stellar mass, luminosity-weighted mean stellar age, molecular to atomic gas ratio, dust temperature and dust morphology. We suggest that these correlations are primarily governed by the optical depth in the 12CO lines; interacting, accreting and/or starbursting early-type galaxies have more optically thin molecular gas while those with settled dust and gas discs host optically thick molecular gas. The ranges of the integrated line intensity ratios generally overlap with those of spirals, although we note some outliers in the 12CO(1- 0)/13CO(1-0), 12CO(2-1)/13CO(2-1) and HCN/HCO+(1-0) ratios. In particular, three galaxies are found to have very low 12CO(1-0)/13CO(1-0) and 12CO(2-1)/13CO(2-1) ratios. Such low ratios may signal particularly stable molecular gas which creates stars less efficiently than normal (i.e. below Schmidt-Kennicutt prediction), consistent with the low dust temperatures seen in these galaxies.
We present new ~1 resolution data of the dense molecular gas in the central 50-100 pc of four nearby Seyfert galaxies. PdBI observations of HCN and, in 2 of the 4 sources, simultaneously HCO+ allow us to carefully constrain the dynamical state of the dense gas surrounding the AGN. Analysis of the kinematics shows large line widths of 100-200 km/s FWHM that can only partially arise from beam smearing of the velocity gradient. The observed morphological and kinematic parameters (dimensions, major axis position angle, red and blue channel separation, and integrated line width) are well reproduced by a thick disk, where the emitting dense gas has a large intrinsic dispersion (20-40 km/s), implying that it exists at significant scale heights (25-30% of the disk radius). To put the observed kinematics in the context of the starburst and AGN evolution, we estimate the Toomre Q parameter. We find this is always greater than the critical value, i.e. Q is above the limit such that the gas is stable against rapid star formation. This is supported by the lack of direct evidence, in these 4 Seyfert galaxies, for on-going star formation close around the AGN. Instead, any current star formation tends to be located in a circumnuclear ring. We conclude that the physical conditions are indeed not suited to star formation within the central ~100 pc.
We present interferometric observations of CO lines (12CO(1-0, 2-1) and 13CO(1-0, 2-1)) and dense gas tracers (HCN(1-0), HCO+(1-0), HNC(1-0) and HNCO(4-3)) in two nearby edge-on barred lenticular galaxies, NGC 4710 and NGC 5866, with most of the gas concentrated in a nuclear disc and an inner ring in each galaxy. We probe the physical conditions of a two-component molecular interstellar medium in each galaxy and each kinematic component by using molecular line ratio diagnostics in three complementary ways. First, we measure the ratios of the position-velocity diagrams of different lines, second we measure the ratios of each kinematic components integrated line intensities as a function of projected position, and third we model these line ratios using a non-local thermodynamic equilibrium radiative transfer code. Overall, the nuclear discs appear to have a tenuous molecular gas component that is hotter, optically thinner and with a larger dense gas fraction than that in the inner rings, suggesting more dense clumps immersed in a hotter more diffuse molecular medium. This is consistent with evidence that the physical conditions in the nuclear discs are similar to those in photo-dissociation regions. A similar picture emerges when comparing the observed molecular line ratios with those of other galaxy types. The physical conditions of the molecular gas in the nuclear discs of NGC4710 and NGC5866 thus appear intermediate between those of spiral galaxies and starbursts, while the star formation in their inner rings is even milder.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا