Do you want to publish a course? Click here

Evidence for an Interaction in the Nearest Starbursting Dwarf Irregular Galaxy IC 10

116   0   0.0 ( 0 )
 Added by David Nidever
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using deep 21-cm HI data from the Green Bank Telescope we have detected an ~18.3 kpc-long gaseous extension associated with the starbursting dwarf galaxy IC 10. The newly-found feature stretches 1.3 deg to the northwest and has a large radial velocity gradient reaching to ~65 km/s lower than the IC 10 systemic velocity. A region of higher column density at the end of the extension that possesses a coherent velocity gradient (~10 km/s across ~26 arcmin) transverse to the extension suggests rotation and may be a satellite galaxy of IC 10. The HI mass of IC 10 is 9.5x10^7 (d/805 kpc)^2 Msun and the mass of the new extension is 7.1x10^5 (d/805 kpc)^2 Msun. An IC 10-M31 orbit using known radial velocity and proper motion values for IC 10 show that the HI extension is inconsistent with the trailing portion of the orbit so that an M31-tidal or ram pressure origin seems unlikely. We argue that the most plausible explanation for the new feature is that it is the result of a recent interaction (and possible late merger) with another dwarf galaxy. This interaction could not only have triggered the origin of the recent starburst in IC 10, but could also explain the existence of previously-found counter-rotating HI gas in the periphery of the IC 10 which was interpreted as originating from primordial gas infall.



rate research

Read More

Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role, they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby star burst dwarf irregular galaxy IC 10 using observations at 140 MHz with the LOw-Frequency ARray (LOFAR), at 1580 MHz with the Very Large Array (VLA) and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic-ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of $D=(0.4$-$0.8) times 10^{26}(E/{rm GeV})^{0.5}~{rm cm^2,s^{-1}}$, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of $approx$$50~rm km,s^{-1}$, as expected for a cosmic-ray driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc--halo interface.
Dense molecular gas and star formation are correlated in galaxies. The effect of low metallicity on this relationship is crucial for interpreting observations of high redshift galaxies, which have lower metallicities than galaxies today. However, it remains relatively unexplored because dense molecular gas tracers like HCN and HCO+ are faint in low metallicity systems. We present Green Bank Telescope observations of HCN(1-0) and HCO+(1-0) on giant molecular cloud (34pc) scales in the nearby low metallicity ($12+log({rm O/H})=8.2$) starburst IC 10 and compare them to those in other galaxies. We detect HCN and HCO+ in one and three of five pointings, respectively. The $I_{rm HCN}/I_{rm HCO+}$ values are within the range seen in other galaxies, but are most similar to those seen in other low metallicity sources and in starbursts. The detections follow the fiducial $L_{rm IR}$-$L_{rm HCN}$ and $L_{rm IR}$-$L_{rm HCO+}$ relationships. These trends suggest that HCN and HCO+ can be used to trace dense molecular gas at metallicities of 1/4 $Z_odot$, to first order. The dense gas fraction is similar to that in spiral galaxies, but lower than that in U/LIRGs. The dense molecular gas star formation efficiency, however, is on the upper end of those in normal galaxies and consistent with those in U/LIRGs. These results suggest that the CO and HCN/HCO+ emission occupy the same relative volumes as at higher metallicity, but that the entire emitting structure is reduced in size. Dense gas mass estimates for high redshift galaxies may need to be corrected for this effect.
We conducted an observation of the nearby irregular galaxy IC 1613 with the Chandra X-ray Observatory using the S3 chip of the ACIS with an effective exposure time of 49.9 ksec. The observation primarily targeted the extensive bubble and star formation region in the northeast quadrant of the galaxy. The only known supernova remnant (SNR) in IC 1613, S8, is also the galaxys most luminous X-ray source (L_X (0.3-8 keV) ~5-6x10^{36} erg/s). We resolve the SNR with Chandra and compare its nearly circular X-ray morphology with Halpha and radio images. We assign an upper limit on the luminosity of any possible associated compact central object of ~4x10^{35}$ erg/s (0.3-8 keV band) and conclude that we would detect a Crab-like pulsar but not a Cas A-like object. We infer an age for S8 of ~3400-5600 years and compare it to other SNRs in the Local Group. We suggest that S8 is a young composite SNR.
In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black-hole and neutron-star high mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a multi-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8 sigma correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color-magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher fx/fv ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.
We investigate the kinematic properties and stellar population of the Galactic satellite Willman 1 (Wil 1) by combining Keck/DEIMOS spectroscopy with KPNO mosaic camera imaging. Wil 1 is an ultra-low luminosity Milky Way companion. This object lies in a region of size-luminosity space (M_V ~ -2 mag, d ~ 38 kpc, r_half ~ 20 pc) also occupied by the Galactic satellites Bootes II and Segue 1 and 2, but no other known old stellar system. We use kinematic and color-magnitude criteria to identify 45 stars as possible members of Wil 1. With a systemic velocity of v_helio = -12.8 +/- 1.0 km/s, Wil 1 stars have velocities similar to those of foreground Milky Way stars. Informed by Monte-Carlo simulations, we identify 5 of the 45 candidate member stars as likely foreground contaminants. We confirm a significant spread in the abundances of the likely Wil 1 red giant branch members ([Fe/H] = -1.73 +/- 0.12 and -2.65 +/- 0.12, [Ca/Fe] = -0.4 +/- 0.18 and +0.13 +/- 0.28). This spread supports the scenario that Wil 1 is an ultra-low luminosity dwarf galaxy rather than a star cluster. Wil 1s innermost stars move with radial velocities offset by 8 km/s from its outer stars and have a velocity dispersion consistent with 0 km/s, suggesting that Wil 1 may not be in dynamical equilibrium. The combination of the foreground contamination and unusual kinematic distribution make it difficult to robustly determine the dark matter mass of Wil 1. As a result, X-ray or gamma-ray observations of Wil 1 that attempt to constrain models of particle dark matter using an equilibrium mass model are strongly affected by the systematics in the observations presented here. We conclude that, despite the unusual features in the Wil 1 kinematic distribution, evidence indicates that this object is, or at least once was, a dwarf galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا