Do you want to publish a course? Click here

A microscopic model for detecting the surface states photoelectrons in Topological Insulators

89   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a model for the photoelectrons emitted from the surface of a Topological insulator induced by a polarized laser source. The model is based on the tunneling of the surface electrons into the vacuum in the presence of a photon field. Using the Hamiltonian which describes the coupling of the photons to the surface electrons we compute the intensity and polarization of the photoelectrons.



rate research

Read More

The surface states in three-dimensional (3D) topological insulators (TIs) can be described by a two-dimensional (2D) continuous Dirac Hamiltonian. However, there exists the Fermion doubling problem when putting the continuous 2D Dirac equation into a lattice model. In this letter, we introduce a Wilson term with a zero bare mass into the 2D lattice model to overcome the difficulty. By comparing with a 3D Hamiltonian, we show that the modified 2D lattice model can faithfully describe the low-energy electrical and transport properties of surface states of 3D TIs. So this 2D lattice model provides a simple and cheap way to numerically simulate the surface states of 3D TI nanostructures. Based on the 2D lattice model, we also establish the wormhole effect in a TI nanowire by a magnetic field along the wire and show the surface states being robust against disorder. The proposed 2D lattice model can be extensively applied to study the various properties and effects, such as the transport properties, Hall effect, universal conductance fluctuations, localization effect, etc.. So it paves a new way to study the surface states of the 3D topological insulators.
The edge states of a two-dimensional quantum spin Hall (QSH) insulator form a one-dimensional helical metal which is responsible for the transport property of the QSH insulator. Conceptually, such a one-dimensional helical metal can be attached to any scattering region as the usual metallic leads. We study the analytical property of the scattering matrix for such a conceptual multiterminal scattering problem in the presence of time reversal invariance. As a result, several theorems on the connectivity property of helical edge states in two-dimensional QSH systems as well as surface states of three-dimensional topological insulators are obtained. Without addressing real model details, these theorems, which are phenomenologically obtained, emphasize the general connectivity property of topological edge/surface states from the mere time reversal symmetry restriction.
We study the properties of a family of anti-pervoskite materials, which are topological crystalline insulators with an insulating bulk but a conducting surface. Using ab-initio DFT calculations, we investigate the bulk and surface topology and show that these materials exhibit type-I as well as type-II Dirac surface states protected by reflection symmetry. While type-I Dirac states give rise to closed circular Fermi surfaces, type-II Dirac surface states are characterized by open electron and hole pockets that touch each other. We find that the type-II Dirac states exhibit characteristic van-Hove singularities in their dispersion, which can serve as an experimental fingerprint. In addition, we study the response of the surface states to magnetic fields.
The metallic surface state of a topological insulator (TI) is not only topologically protected, but exhibits a remarkable property of inducing an effective vector potential on curved surfaces. For an electron in the surface state of a spherical or a cylindrical TI (TI nanoparticle or nanowire) a pseudo-magnetic monopole or a fictitious solenoid is effectively induced, encoding the geometry of the system. Here, by taking an example of a hyperbolic surface we demonstrate that as a consequence of this property stemming from its active spin degree of freedom, the surface state is by itself topologically protected.
We investigate the spin and charge densities of surface states of the three-dimensional topological insulator $Bi_2Se_3$, starting from the continuum description of the material [Zhang {em et al.}, Nat. Phys. 5, 438 (2009)]. The spin structure on surfaces other than the 111 surface has additional complexity because of a misalignment of the contributions coming from the two sublattices of the crystal. For these surfaces we expect new features to be seen in the spin-resolved ARPES experiments, caused by a non-helical spin-polarization of electrons at the individual sublattices as well as by the interference of the electron waves emitted coherently from two sublattices. We also show that the position of the Dirac crossing in spectrum of surface states depends on the orientation of the interface. This leads to contact potentials and surface charge redistribution at edges between different facets of the crystal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا