Do you want to publish a course? Click here

Type-II Dirac surface states in topological crystalline insulators

79   0   0.0 ( 0 )
 Added by Ching-Kai Chiu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the properties of a family of anti-pervoskite materials, which are topological crystalline insulators with an insulating bulk but a conducting surface. Using ab-initio DFT calculations, we investigate the bulk and surface topology and show that these materials exhibit type-I as well as type-II Dirac surface states protected by reflection symmetry. While type-I Dirac states give rise to closed circular Fermi surfaces, type-II Dirac surface states are characterized by open electron and hole pockets that touch each other. We find that the type-II Dirac states exhibit characteristic van-Hove singularities in their dispersion, which can serve as an experimental fingerprint. In addition, we study the response of the surface states to magnetic fields.



rate research

Read More

Confining two dimensional Dirac fermions on the surface of topological insulators has remained an outstanding conceptual challenge. Here we show that Dirac fermion confinement is achievable in topological crystalline insulators (TCI), which host multiple surface Dirac cones depending on the surface termination and the symmetries it preserves. This confinement is most dramatically reflected in the flux dependence of these Dirac states in the nanowire geometry, where different facets connect to form a closed surface. Using SnTe as a case study, we show how wires with all four facets of the <100> type display pronounced and unique Aharonov-Bohm oscillations, while nanowires with the four facets of the <110> type such oscillations are absent due to a strong confinement of the Dirac states to each facet separately. Our results place TCI nanowires as versatile platform for confining and manipulating Dirac surface states.
We have investigated the nature of surface states in the Bi2Te3 family of three-dimensional topological insulators using first-principles calculations as well as model Hamiltonians. When the surface Dirac cone is warped due to Dresselhaus spin-orbit coupling in rhombohedral structures, the spin acquires a finite out-of-plane component. We predict a novel in-plane spin-texture of the warped surface Dirac cone with spins not perpendicular to the electron momentum. Our k.p model calculation reveals that this novel in-plane spin-texture requires high order Dresselhaus spin-orbit coupling terms.
95 - Sahinur Reja 2017
We study topological crystalline insulators doped with magnetic impurities, in which ferromagnetism at the surface lowers the electronic energy by spontaneous breaking of a crystalline symmetry. The number of energetically equivalent ground states is sensitive to the crystalline symmetry of the surface, as well as the precise density of electrons at the surface. We show that for a SnTe model in the topological state, magnetic states can have twofold symmetry, sixfold symmetry, or eightfold degenerate minima. We compute spin stiffnesses within the model to demonstrate the stability of ferromagnetic states, and consider their ramifications for thermal disordering. Possible experimental consequences of the surface magnetism are discussed.
It has been known that an anti-unitary symmetry such as time-reversal or charge conjugation is needed to realize Z2 topological phases in non-interacting systems. Topological insulators and superconducting nanowires are representative examples of such Z2 topological matters. Here we report the first-known Z2 topological phase protected by only unitary symmetries. We show that the presence of a nonsymmorphic space group symmetry opens a possibility to realize Z2 topological phases without assuming any anti-unitary symmetry. The Z2 topological phases are constructed in various dimensions, which are closely related to each other by Hamiltonian mapping. In two and three dimensions, the Z2 phases have a surface consistent with the nonsymmorphic space group symmetry, and thus they support topological gapless surface states. Remarkably, the surface states have a unique energy dispersion with the Mobius twist, which identifies the Z2 phases experimentally. We also provide the relevant structure in the K-theory.
We investigate the electrical conductivity and thermoelectric effects in topological crystalline insulators in the presence of short- and long-range impurity interactions. We employ the generalized Boltzmann formalism for anisotropic Fermi surface systems. The conductivity exhibits a local minimum as doping varies owing to the Van Hove singularity in the density of states originated from the saddle point in the surface states band structure. Suppression of the interband scattering of the charge carriers at high-energy Dirac points results in a maximum in the electrical conductivity. Whenever the Fermi level passes an extremum in the conductivity, Seebeck coefficient changes sign. In addition, it is revealed that profound thermoelectric effects can be attained around these extrema points.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا