Do you want to publish a course? Click here

A posteriori error analysis of hybrid high-order method for the Stokes problem

155   0   0.0 ( 0 )
 Added by Yongchao Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a residual-based a posteriori error estimator for the hybrid high-order (HHO) method for the Stokes model problem. Both the proposed HHO method and error estimator are valid in two and three dimensions and support arbitrary approximation orders on fairly general meshes. The upper bound and lower bound of the error estimator are proved, in which proof, the key ingredient is a novel stabilizer employed in the discrete scheme. By using the given estimator, adaptive algorithm of HHO method is designed to solve model problem. Finally, the expected theoretical results are numerically demonstrated on a variety of meshes for model problem.



rate research

Read More

123 - Liam Yemm 2021
We propose an Extended Hybrid High-Order scheme for the Poisson problem with solution possessing weak singularities. Some general assumptions are stated on the nature of this singularity and the remaining part of the solution. The method is formulated by enriching the local polynomial spaces with appropriate singular functions. Via a detailed error analysis, the method is shown to converge optimally in both discrete and continuous energy norms. Some tests are conducted in two dimensions for singularities arising from irregular geometries in the domain. The numerical simulations illustrate the established error estimates, and show the method to be a significant improvement over a standard Hybrid High-Order method.
The spectral deferred correction method is a variant of the deferred correction method for solving ordinary differential equations. A benefit of this method is that is uses low order schemes iteratively to produce a high order approximation. In this paper we consider adjoint-based a posteriori analysis to estimate the error in a quantity of interest of the solution. This error formula is derived by first developing a nodally equivalent finite element method to the spectral deferred correction method. The error formula is then split into various terms, each of which characterizes a different component of the error. These components may be used to determine the optimal strategy for changing the method parameters to best improve the error.
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
For the Stokes equation over 2D and 3D domains, explicit a posteriori and a priori error estimation are novelly developed for the finite element solution. The difficulty in handling the divergence-free condition of the Stokes equation is solved by utilizing the extended hypercircle method along with the Scott-Vogelius finite element scheme. Since all terms in the error estimation have explicit values, by further applying the interval arithmetic and verified computing algorithms, the computed results provide rigorous estimation for the approximation error. As an application of the proposed error estimation, the eigenvalue problem of the Stokes operator is considered and rigorous bounds for the eigenvalues are obtained. The efficiency of proposed error estimation is demonstrated by solving the Stokes equation on both convex and non-convex 3D domains.
This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا