No Arabic abstract
The derivation of the Helmholtz theorem of vector decomposition of a 3-vector field requires that the field satisfy certain convergence properties at spatial infinity. This paper investigates if time-dependent electromagnetic radiation wave fields, which are of long range, satisfy these requirements. It is found that the requirements are satisfied because the fields give rise to integrals over the radial distance r of integrands of the form sin(kr)/r and cos(kr)/r. These Dirichlet integrals converge at infinity as required.
Decomposing the field scattered by an object into vector spherical harmonics (VSH) is the prime task when discussing its optical properties on more analytical grounds. Thus far, it was frequently required in the decomposition that the scattered field is available on a spherical surface enclosing the scatterer; being with that adapted to the spatial dependency of the VSHs but being rather incompatible with many numerical solvers. To mitigate this problem, we propose an orthogonal expression for the decomposition that holds for any surface that encloses the scatterer, independently of its shape. We also show that the orthogonal relations remain unchanged when the radiative VSH used for the expansion of the scattered field are substituted by the VSH used for the expansion of the illumination as test functions. This is a key factor for the numerical stability of our decomposition. As example, we use a finite-element based solver to compute the multipole response of a nanorod illuminated by a plane wave and study its convergence properties.
Can quantum-mechanical particles propagating on a fixed spacetime background be approximated as test bodies satisfying the weak equivalence principle? We ultimately answer the question in the negative but find that, when universality of free-fall is assessed locally, a nontrivial agreement between quantum mechanics and the weak equivalence principle exists. Implications for mass sensing by quantum probes are discussed in some details.
Unsupervised pretraining is an integral part of many natural language processing systems, and transfer learning with language models has achieved remarkable results in many downstream tasks. In the clinical application of medical code assignment, diagnosis and procedure codes are inferred from lengthy clinical notes such as hospital discharge summaries. However, it is not clear if pretrained models are useful for medical code prediction without further architecture engineering. This paper conducts a comprehensive quantitative analysis of various contextualized language models performance, pretrained in different domains, for medical code assignment from clinical notes. We propose a hierarchical fine-tuning architecture to capture interactions between distant words and adopt label-wise attention to exploit label information. Contrary to current trends, we demonstrate that a carefully trained classical CNN outperforms attention-based models on a MIMIC-III subset with frequent codes. Our empirical findings suggest directions for improving the medical code assignment application.
Using the Finite-Difference-Time-Domain (FDTD) method, we compute the electromagnetic field distribution in and around dielectric media of various shapes and optical properties. With the aid of the constitutive relations, we proceed to compute the bound charge and bound current densities, then employ the Lorentz law of force to determine the distribution of force-density within the regions of interest. For a few simple cases where analytical solutions exist, these solutions are found to be in complete agreement with our numerical results. We also analyze the distribution of fields and forces in more complex systems, and discuss the relevance of our findings to experimental observations. In particular, we demonstrate the single-beam trapping of a dielectric micro-sphere immersed in a liquid under conditions that are typical of optical tweezers.
Cylindrical vector beam (CVB) is a structured lightwave characterized by its topologically nontrivial nature of the optical polarization. The unique electromagnetic field configuration of CVBs has been exploited to optical tweezers, laser accelerations, and so on. However, use of CVBs in research fields outside optics such as condensed matter physics has not progressed. In this paper, we propose potential applications of CVBs to those fields based on a general argument on their absorption by matter. We show that pulse azimuthal CVBs around terahertz (THz) or far-infrared frequencies can be a unique and powerful mean for time-resolved spectroscopy of magnetic properties of matter and claim that an azimuthal electric field of a pulse CVB would be a novel way of studying and controlling edge currents in topological materials. We also demonstrate how powerful CVBs will be as a tool for Floquet engineering of nonequilibrium states of matter.