Do you want to publish a course? Click here

Effects of octahedral tilting on the electronic structure and optical properties of $d^0$ double perovskites $mathbf{rm A_2ScSbO_6}$ ($mathbf{rm A=Sr, Ca}$)

144   0   0.0 ( 0 )
 Added by Rajyavardhan Ray
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

With increasing temperature, ${rm Sr}_2{rm ScSbO}_6$ undergoes three structural phase transitions at approximately ${rm 400K}$, ${rm 560K}$ and ${rm 650K}$, leading to the following sequence of phases: $P2_1/n rightarrow I2/m rightarrow I4/m rightarrow Fmbar{3}m$, making it an ideal candidate to study the effects of octahedral tilting keeping other parameters fixed. To ascertain the isolated effects of octahedral distortions, the electronic and optical properties of the monoclinic $P2_1/n$ (at room temperature), monoclinic $I2/m$ (at ${rm 430K}$), tetragonal $I4/m$ (at ${rm 613K}$) and the cubic $Fmbar{3}m$ (at ${rm 660K}$) phases have been studied in terms of the electronic structure, dielectric constant, optical conductivity and electron energy loss spectroscopy using density functional theory. ${rm Ca}_2{rm ScSbO}_6$, on the other hand, shows only a $P2_1/n$ phase at room temperature and its properties have been been compared with the corresponding ${rm Sr}$ compound. UV-Vis spectroscopic studies of the optical properties of the room-temperature phase of these $d^0$ double perovskite have been performed and presence of large direct bandgap for both the compounds have been reported. The electronic bandgaps for the room temperature phases is found to be in good agreement with the corresponding experimental values obtained using the Kubelka-Munk function. Interestingly, in contrast to other Sc-based $d^0$ double perovskites, with increasing octahedral distortions, the effective $t_{rm 2g}$ bandwidth remains unaffected while the states forming the band change due to changes in unit cell orientation, leading to small effects on the electronic and optical properties.



rate research

Read More

107 - G. Venkat 2020
The determination of the magnon diffusion length (MDL) is important for increasing the efficiency of spin Seebeck effect (SSE) based devices utilising non-metallic magnets. We extract the MDL at $50$ and $300,rm{K}$ in an $rm{Fe}_{3}rm{O}_{4}$ single crystal from the magnon dispersion obtained using inelastic neutron scattering (INS) and find them to be equal within error. We then measure the heat flux normalised SSE responses and in-plane magnetization of $rm{Fe}_{3}rm{O}_{4}$ thin films and normalise by the static magnetization contribution to the SSE before determining the MDLs from a fit of the thickness dependence. We find that the MDLs determined in this way are smaller than that measured from INS which maybe due to differences in magnon propagation between bulk and thin film $rm{Fe}_{3}rm{O}_{4}$.
We utilize the experimentally known difference of the $Lambda$ separation energies of the mirror hypernuclei ${^4_Lambda rm He}$ and ${^4_Lambda rm H}$ to constrain the $Lambda$-neutron interaction. We include the leading charge-symmetry breaking (CSB) interaction into our hyperon-nucleon interaction derived within chiral effective field theory at next-to-leading order. In particular, we determine the strength of the two arising CSB contact terms by a fit to the differences of the separation energies of these hypernuclei in the $0^+$ and $1^+$ states, respectively. By construction, the resulting interaction describes all low energy hyperon-nucleon scattering data, the hypertriton and the CSB in ${^4_Lambda rm He}$-${^4_Lambda rm H}$ accurately. This allows us to provide first predictions for the $Lambda$n scattering lengths, based solely on available hypernuclear data.
In this paper, we employ CASTEP based on DFT (density functional theory) calculations to investigate various physical properties of BaVO3, SrVO3, CaVO3 and PbVO3. The elastic constants, bulk modulus, Shear modulus, Youngs modulus, Pughs ratio, Poissons ratio, Vickers hardness, universal anisotropy index and Peierls stress are calculated to rationalize the mechanical behavior of the aforementioned compounds. The study of electronic band structure and density of states (DOS) reveal the strong evidence of metallic behavior for all the perovskites. The analysis of bonding properties exhibits the existence of covalent, ionic and metallic bonds. The optical properties of AVO3 have been carried out and are discussed in this paper as well. The analysis of phonon property implies the dynamical stability of BaVO3 but not for SrVO3, CaVO3 and PbVO3. The values of Debye temperature and minimum thermal conductivity imply that only PbVO3 compound has potential to be used as TBC material.
Ba2ScSbO6 (BSS) has been synthesized in polycrystalline form by solid state reaction. Structural characterization of the compound was done through X-ray diffraction (XRD) followed by Riedvelt analysis of the XRD pattern. The crystal structure is cubic, space group Fm-3m (No. 225. Optical band-gap of the present system has been calculated using the UV-Vis Spectroscopy to be 4.2eV. A detailed study of the electronic properties has also been carried out using the Full-Potential Linear Augmented Plane Wave (FPLAPW) as implemented in WIEN2k. BSS is found to be a large band-gap insulator with potential technological applications, such as dielectric resonators and filers in microwave applications
Using density-functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB$^{2+}$X$_3$) and double perovskites (AB$^+$B$^{3+}$X$_6$) (A = Cs or monovalent organic ion, B$^{2+}$ = non-Pb divalent metal, B$^+$ = monovalent metal, B$^{3+}$ = trivalent metal, X = halogen). We show that, if B$^{2+}$ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect bandgap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct bandgaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell application. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely those with B$^+$ = In, Tl and B$^{3+}$ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا