Do you want to publish a course? Click here

Double neutron spin resonances and gap anisotropy in underdoped superconducting NaFe0.985Co0.015As

578   0   0.0 ( 0 )
 Added by Chenglin Zhang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use inelastic neutron scattering to show that superconductivity in electron-underdoped NaFe0.985Co0.015As induces a dispersive sharp resonance near Er1 = 3:25 meV and a broad dis- persionless mode at Er2 = 6 meV. However, similar measurements on overdoped superconducting NaFe0:955Co0:045As find only a single sharp resonance at Er = 7 meV. We connect these results with the observations of angle-resolved photoemission spectroscopy that the superconducting gaps in the electron Fermi pockets are anisotropic in the underdoped material but become isotropic in the overdoped case. Our analysis indicates that both the double neutron spin resonances and gap anisotropy originate from the orbital dependence of the superconducting pairing in the iron pnic- tides. Our discovery also shows the importance of the inelastic neutron scattering in detecting the multiorbital superconducting gap structures of iron pnictides.



rate research

Read More

We use inelastic neutron scattering (INS) to study the spin excitations in partially detwinned NaFe$_{0.985}$Co$_{0.015}$As which has coexisting static antiferromagnetic (AF) order and superconductivity ($T_c=15$ K, $T_N=30$ K). In previous INS work on a twinned sample, spin excitations form a dispersive sharp resonance near $E_{r1}=3.25$ meV and a broad dispersionless mode at $E_{r1}=6$ meV at the AF ordering wave vector ${bf Q}_{rm AF}={bf Q}_1=(1,0)$ and its twinned domain ${bf Q}_2=(0,1)$. For partially detwinned NaFe$_{0.985}$Co$_{0.015}$As with the static AF order mostly occurring at ${bf Q}_{rm AF}=(1,0)$, we still find a double resonance at both wave vectors with similar intensity. Since ${bf Q}_1=(1,0)$ characterizes the explicit breaking of the spin rotational symmetry associated with the AF order, these results indicate that the double resonance cannot be due to the static and fluctuating AF orders, but originate from the superconducting gap anisotropy.
We use polarized inelastic neutron scattering (INS) to study spin excitations in superconducting NaFe0.985Co0.015As (C15) with static antiferromagnetic (AF) order along the a-axis of the orthorhombic structure and NaFe0.935Co0.045As (C45) without AF order. In previous unpolarized INS work, spin excitations in C15 were found to have a dispersive sharp resonance near Er1=3.25 meV and a broad dispersionless mode at Er2=6 meV. Our neutron polarization analysis reveals that the dispersive resonance in C15 is highly anisotropic and polarized along the a- and c-axis, while the dispersionless mode is isotropic similar to that of C45. Since the a-axis polarized spin excitations of the anisotropic resonance appear below Tc, our data suggests that the itinerant electrons contributing to the magnetism are also coupled to the superconductivity.
To explore the doping dependence of the recently discovered charge density wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we show that bulk CDW order exists at least for hole concentrations (p) in the CuO2 planes of 0.078 <~ p <~ 0.132. This implies that CDW order exists in close vicinity to the quantum critical point for spin density wave (SDW) order. In contrast to the pseudogap temperature T*, the onset temperature of CDW order decreases with underdoping to T_CDW ~ 90K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic field as samples closer to p = 1/8. At low p the CDW incommensurability continues the previously reported linear increasing trend with underdoping. In the entire doping range the in-plane correlation length of the CDW order in b-axis direction depends only very weakly on the hole concentration, and appears independent of the type and correlation length of the oxygen-chain order. The onset temperature of the CDW order is remarkably close to a temperature T^dagger that marks the maximum of 1/(T_1T) in planar 63^Cu NQR/NMR experiments, potentially indicating a response of the spin dynamics to the formation of the CDW. Our discussion of these findings includes a detailed comparison to the charge stripe order in La2-xBaxCuO4.
High-temperature superconductivity in iron-arsenic materials (pnictides) near an antiferromagnetic phase raises the possibility of spin-fluctuation-mediated pairing. However, the interplay between antiferromagnetic fluctuations and superconductivity remains unclear in the underdoped regime, which is closer to the antiferromagnetic phase. Here we report that the superconducting gap of the underdoped pnictides scales linearly with the transition temperature, and that a distinct pseudogap coexisting with the SC gap develops on underdoping. This pseudogap occurs on Fermi surface sheets connected by the antiferromagnetic wavevector, where the superconducting pairing is stronger as well, suggesting that antiferromagnetic fluctuations drive both the pseudogap and superconductivity. Interestingly, we found that the pseudogap and the spectral lineshape vary with the Fermi surface quasi-nesting conditions in a fashion that shares similarities with the nodal-antinodal dichotomous behaviour observed in underdoped copper oxide superconductors.
125 - Y. Zhang , J. J. Lee , R. G. Moore 2015
Fermi surface topology and pairing symmetry are two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature (Tc) over 77 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1ML FeSe using angle-resolved photoemission spectroscopy (ARPES). Two ellipse-like electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which put strong constraints on determining the pairing symmetry. The gap maxima locate along the major axis of ellipse, which cannot be explained by a single d-wave, extended s-wave, or s$pm$ gap function. Four gap minima are observed at the intersection of electron pockets suggesting the existence of either a sign change or orbital-dependent pairing in 1ML FeSe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا