Do you want to publish a course? Click here

Enhanced correlation of electron-positron pair in the two and three dimensions

98   0   0.0 ( 0 )
 Added by Bai-Song Xie
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Early-time electron-positron correlation in vacuum pair-production in an external field is investigated. The entangled electron and positron wave functions are obtained analytically in the configuration and momentum spaces. It is shown that, relative to that of the one-dimensional theory, two- and three-dimensional calculations yield enhanced spatial correlation and broadened momentum spectrum. In fact, at early times the electron and positron almost coincide spatially. The correlation also depends on the direction of the applied field. For the spatial correlation, the transverse correlation is stronger than the longitudinal one.



rate research

Read More

The pair-production process in the presence of strong linearly polarized laser fields with a subcycle structure is considered. Laser pulses with different envelope shapes are examined by means of a nonperturbative numerical technique. We analyze two different flat envelope shapes and two shapes without a plateau for their various parameters including the carrier-envelope phase. The resonant Rabi oscillations, momentum distribution of particles created, and total number of pairs are studied. It is demonstrated that all these characteristics are very sensitive to the pulse shape.
Particles in quantum vortex states (QVS) carrying definite orbital angular momenta (OAM) brings new perspectives in various fundamental interaction processes. When unique properties arise in the QVS, understanding how OAM manifest itself between initial particles and the outcome in vortex particle collisions becomes essential. This is made possible by applying the complete vortex description for all involved particles such that angular momenta (AM) are represented by explicit quantum numbers and their connections are naturally retrieved. We demonstrate the full-vortex quantum-electrodynamics (QED) results for the Breit-Wheeler pair creation process and derive the AM-dependent selection rule. The numerically resolved cross-sections show anti-symmetric spin polarization and most importantly, the first OAM spectra in vortex collision processes. The latter reveals efficient conversion of OAM to created pairs, leading to featured hollow and ring-shaped structure in the density distribution. These results demonstrate a clear picture in understanding the OAM physics in the scattering processes of high energy particles.
We make a gradient correction to a new local density approximation form of positron-electron correlation. Then the positron lifetimes and affinities are probed by using these two approximation forms based on three electronic-structure calculation methods including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach, the atomic superposition (ATSUP) approach and the projector augmented wave (PAW) approach. The differences between calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron transfers. We further find that a well implemented PAW method can give near-perfect agreement on both the positron lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW method is reduced within the best calculations. By comparing with experimental data, the new introduced gradient corrected correlation form is proved competitive for positron lifetime and affinity calculations.
146 - Lars Bonnes , Stefan Wessel 2011
We examine the equilibrium properties of lattice bosons with attractive on-site interactions in the presence of a three-body hard-core constraint that stabilizes the system against collapse and gives rise to a dimer superfluid phase formed by virtual hopping processes of boson pairs. Employing quantum Monte Carlo simulations, the ground state phase diagram of this system on the square lattice is analyzed. In particular, we study the quantum phase transition between the atomic and dimer superfluid regime and analyze the nature of the superfluid-insulator transitions. Evidence is provided for the existence of a tricritical point along the saturation transition line, where the transition changes from being first-order to a continuous transition of the dilute bose gas of holes. The Berzinskii-Kosterlitz-Thouless transition from the dimer superfluid to the normal fluid is found to be consistent with an anomalous stiffness jump, as expected from the unbinding of half-vortices.
We study the three-body Coulomb problem in two dimensions and show how to calculate very accurately its quantum properties. The use of a convenient set of coordinates makes it possible to write the Schr{o}dinger equation only using annihilation and creation operators of four harmonic oscillators, coupled by various terms of degree up to twelve. We analyse in details the discrete symmetry properties of the eigenstates. The energy levels and eigenstates of the two-dimensional helium atom are obtained numerically, by expanding the Schr{o}dinger equation on a convenient basis set, that gives sparse banded matrices, and thus opens up the way to accurate and efficient calculations. We give some very accurate values of the energy levels of the first bound Rydberg series. Using the complex coordinate method, we are also able to calculate energies and widths of doubly excited states, i.e. resonances above the first ionization threshold. For the two-dimensional $H^{-}$ ion, only one bound state is found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا