No Arabic abstract
An $(alpha,beta)$-metric is defined by a Riemannian metric and $1$-form. In this paper, we investigate the known characterization for $(alpha,beta)$-metrics of isotropic S-curvature. We show that such a characterization should hold in dimension $nge 3$, and for the 2-dimensional case, there is one more class of isotropic S-curvature than the higher dimensional ones. Further, we construct corresponding examples for every two-dimensional class, especially for the class that the norm of $beta$ with respect to $alpha$ is not a constant.
An $(alpha,beta)$-metric is defined by a Riemannian metric $alpha$ and $1$-form $beta$. In this paper, we study a known class of two-dimensional $(alpha,beta)$-metrics of vanishing S-curvature. We determine the local structure of those metrics and show that those metrics are Einsteinian (equivalently, isotropic flag curvature) but generally are not Ricci-flat.
If the flag curvature of a Finsler manifold reduces to sectional curvature, then locally either the Finsler metric is Riemannian, or the flag curvature is isotropic.
An $(alpha,beta)$-manifold $(M,F)$ is a Finsler manifold with the Finsler metric $F$ being defined by a Riemannian metric $alpha$ and $1$-form $beta$ on the manifold $M$. In this paper, we classify $n$-dimensional $(alpha,beta)$-manifolds (non-Randers type) which are positively complete and locally projectively flat. We show that the non-trivial class is that $M$ is homeomorphic to the $n$-sphere $S^n$ and $(S^n,F)$ is projectively related to a standard spherical Riemannian manifold, and then we obtain some special geometric properties on the geodesics and scalar flag curvature of $F$ on $S^n$, especially when $F$ is a metric of general square type.
In this paper, we consider a special class of singular Finsler metrics: $m$-Kropina metrics which are defined by a Riemannian metric and a $1$-form. We show that an $m$-Kropina metric ($m e -1$) of scalar flag curvature must be locally Minkowskian in dimension $nge 3$. We characterize by some PDEs a Kropina metric ($m=-1$) which is respectively of scalar flag curvature and locally projectively flat in dimension $nge 3$, and obtain some principles and approaches of constructing non-trivial examples of Kropina metrics of scalar flag curvature.
We show that mean curvature flow of a compact submanifold in a complete Riemannian manifold cannot form singularity at time infinity if the ambient Riemannian manifold has bounded geometry and satisfies certain curvature and volume growth conditions .