Do you want to publish a course? Click here

Canonical systems of basic invariants for unitary reflection groups

563   0   0.0 ( 0 )
 Added by Norihiro Nakashima
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

It has been known that there exists a canonical system for every finite real reflection group. The first and the third authors obtained an explicit formula for a canonical system in the previous paper. In this article, we first define canonical systems for the finite unitary reflection groups, and then prove their existence. Our proof does not depend on the classification of unitary reflection groups. Furthermore, we give an explicit formula for a canonical system for every unitary reflection group.



rate research

Read More

Using Dunkl operators, we introduce a continuous family of canonical invariants of finite reflection groups. We verify that the elementary canonical invariants of the symmetric group are deformations of the elementary symmetric polynomials. We also compute the canonical invariants for all dihedral groups as certain hypergeometric functions.
A canonical system of basic invariants is a system of invariants satisfying a set of differential equations. The properties of a canonical system are related to the mean value property for polytopes. In this article, we naturally identify the vector space spanned by a canonical system of basic invariants with an invariant space determined by a fundamental antiinvariant. From this identification, we obtain explicit formulas of canonical systems of basic invariants. The construction of the formulas does not depend on the classification of finite irreducible reflection groups.
198 - H.E.A. Campbell 2009
In this paper, we study the vector invariants, ${bf{F}}[m V_2]^{C_p}$, of the 2-dimensional indecomposable representation $V_2$ of the cylic group, $C_p$, of order $p$ over a field ${bf{F}}$ of characteristic $p$. This ring of invariants was first studied by David Richman cite{richman} who showed that this ring required a generator of degree $m(p-1)$, thus demonstrating that the result of Noether in characteristic 0 (that the ring of invariants of a finite group is always generated in degrees less than or equal to the order of the group) does not extend to the modular case. He also conjectured that a certain set of invariants was a generating set with a proof in the case $p=2$. This conjecture was proved by Campbell and Hughes in cite{campbell-hughes}. Later, Shank and Wehlau in cite{cmipg} determined which elements in Richmans generating set were redundant thereby producing a minimal generating set. We give a new proof of the result of Campbell and Hughes, Shank and Wehlau giving a minimal algebra generating set for the ring of invariants ${bf{F}}[m V_2]^{C_p}$. In fact, our proof does much more. We show that our minimal generating set is also a SAGBI basis for ${bf{F}}[m V_2]^{C_p}$. Further, our techniques also serve to give an explicit decomposition of ${bf{F}}[m V_2]$ into a direct sum of indecomposable $C_p$-modules. Finally, noting that our representation of $C_p$ on $V_2$ is as the $p$-Sylow subgroup of $SL_2({bf F}_p)$, we are able to determine a generating set for the ring of invariants of ${bf{F}}[m V_2]^{SL_2({bf F}_p)}$.
V.F. Molchanov considered the Hilbert series for the space of invariant skew-symmetric tensors and dual tensors with polynomial coefficients under the action of a real reflection group, and speculated that it had a certain product formula involving the exponents of the group. We show that Molchanovs speculation is false in general but holds for all coincidental complex reflection groups when appropriately modified using exponents and co-exponents. These are the irreducible well-generated (i.e., duality) reflection groups with exponents forming an arithmetic progression and include many real reflection groups and all non-real Shephard groups, e.g., the Shephard-Todd infinite family $G(d,1,n)$. We highlight consequences for the $q$-Narayana and $q$-Kirkman polynomials, giving simple product formulas for both, and give a $q$-analogue of the identity transforming the $h$-vector to the $f$-vector for the coincidental finite type cluster/Cambrian complexes of Fomin--Zelevinsky and Reading.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا