Using Dunkl operators, we introduce a continuous family of canonical invariants of finite reflection groups. We verify that the elementary canonical invariants of the symmetric group are deformations of the elementary symmetric polynomials. We also compute the canonical invariants for all dihedral groups as certain hypergeometric functions.
A canonical system of basic invariants is a system of invariants satisfying a set of differential equations. The properties of a canonical system are related to the mean value property for polytopes. In this article, we naturally identify the vector space spanned by a canonical system of basic invariants with an invariant space determined by a fundamental antiinvariant. From this identification, we obtain explicit formulas of canonical systems of basic invariants. The construction of the formulas does not depend on the classification of finite irreducible reflection groups.
It has been known that there exists a canonical system for every finite real reflection group. The first and the third authors obtained an explicit formula for a canonical system in the previous paper. In this article, we first define canonical systems for the finite unitary reflection groups, and then prove their existence. Our proof does not depend on the classification of unitary reflection groups. Furthermore, we give an explicit formula for a canonical system for every unitary reflection group.
Let $K$ be an algebraically closed field of characteristic zero. Algebraic structures of a specific type (e.g. algebras or coalgebras) on a given vector space $W$ over $K$ can be encoded as points in an affine space $U(W)$. This space is equipped with a $text{GL}(W)$ action, and two points define isomorphic structures if and only if they lie in the same orbit. This leads to study the ring of invariants $K[U(W)]^{text{GL}(W)}$. We describe this ring by generators and relations. We then construct combinatorially a commutative ring $K[X]$ which specializes to all rings of invariants of the form $K[U(W)]^{text{GL}(W)}$. We show that the commutative ring $K[X]$ has a richer structure of a Hopf algebra with additional coproduct, grading, and an inner product which makes it into a rational PSH-algebra, generalizing a structure introduced by Zelevinsky. We finish with a detailed study of $K[X]$ in the case of an algebraic structure consisting of a single endomorphism, and show how the rings of invariants $K[U(W)]^{text{GL}(W)}$ can be calculated explicitly from $K[X]$ in this case.
Suppose V is a finite dimensional, complex vector space, A is a finite set of codimension one subspaces of V, and G is a finite subgroup of the general linear group GL(V) that permutes the hyperplanes in A. In this paper we study invariants and semi-invariants in the graded QG-module H^*(M(A)), where M(A) denotes the complement in V of the hyperplanes in A and H^* denotes rational singular cohomology, in the case when G is generated by reflections in V and A is the set of reflecting hyperplanes determined by G, or a closely related arrangement. Our main result is the construction of an explicit, natural (from the point of view of Coxeter groups) basis of the space of invariants, H^*(M(A))^G. In addition to leading to proof of the description of the space of invariants conjectured by Felder and Veselov for Coxeter groups that does not rely on computer calculations, this construction provides an extension of the description of the space of invariants proposed by Felder and Veselov to arbitrary finite unitary reflection groups.
In this paper we present a categorical version of the first and second fundamental theorems of the invariant theory for the quantized symplectic groups. Our methods depend on the theory of braided strict monoidal categories which are pivotal, more explicitly the diagram category of framed tangles.