Do you want to publish a course? Click here

Efficient Estimation of Highly Structured Posteriors of Gravitational-Wave Signals with Markov-Chain Monte Carlo

159   0   0.0 ( 0 )
 Added by Benjamin Farr
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new Markov-Chain Monte Carlo (MCMC) approach designed for efficient sampling of highly correlated and multimodal posteriors. Parallel tempering, though effective, is a costly technique for sampling such posteriors. Our approach minimizes the use of parallel tempering, only using it for a short time to tune a new jump proposal. For complex posteriors we find efficiency improvements up to a factor of ~13. The estimation of parameters of gravitational-wave signals measured by ground-based detectors is currently done through Bayesian inference with MCMC one of the leading sampling methods. Posteriors for these signals are typically multimodal with strong non-linear correlations, making sampling difficult. As we enter the advanced-detector era, improved sensitivities and wider bandwidths will drastically increase the computational cost of analyses, demanding more efficient search algorithms to meet these challenges.



rate research

Read More

We present a Markov-chain Monte-Carlo (MCMC) technique to study the source parameters of gravitational-wave signals from the inspirals of stellar-mass compact binaries detected with ground-based gravitational-wave detectors such as LIGO and Virgo, for the case where spin is present in the more massive compact object in the binary. We discuss aspects of the MCMC algorithm that allow us to sample the parameter space in an efficient way. We show sample runs that illustrate the possibilities of our MCMC code and the difficulties that we encounter.
Gravitational-wave signals from inspirals of binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave (GW) interferometers (LIGO, Virgo, and GEO-600). We present parameter-estimation results from our Markov-chain Monte-Carlo code SPINspiral on signals from binaries with precessing spins. Two data sets are created by injecting simulated GW signals into either synthetic Gaussian noise or into LIGO detector data. We compute the 15-dimensional probability-density functions (PDFs) for both data sets, as well as for a data set containing LIGO data with a known, loud artefact (glitch). We show that the analysis of the signal in detector noise yields accuracies similar to those obtained using simulated Gaussian noise. We also find that while the Markov chains from the glitch do not converge, the PDFs would look consistent with a GW signal present in the data. While our parameter-estimation results are encouraging, further investigations into how to differentiate an actual GW signal from noise are necessary.
Selection among alternative theoretical models given an observed data set is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty: it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the MCMC algorithm and convergence is correspondingly slow. Here we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose inter-model jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient global proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher-dimensional spaces efficiently.
We introduce a fast Markov Chain Monte Carlo (MCMC) exploration of the astrophysical parameter space using a modified version of the publicly available code CIGALE (Code Investigating GALaxy emission). The original CIGALE builds a grid of theoretical Spectral Energy Distribution (SED) models and fits to photometric fluxes from Ultraviolet (UV) to Infrared (IR) to put contraints on parameters related to both formation and evolution of galaxies. Such a grid-based method can lead to a long and challenging parameter extraction since the computation time increases exponentially with the number of parameters considered and results can be dependent on the density of sampling points, which must be chosen in advance for each parameter. Markov Chain Monte Carlo methods, on the other hand, scale approximately linearly with the number of parameters, allowing a faster and more accurate exploration of the parameter space by using a smaller number of efficiently chosen samples. We test our MCMC version of the code CIGALE (called CIGALEMC) with simulated data. After checking the ability of the code to retrieve the input parameters used to build the mock sample, we fit theoretical SEDs to real data from the well known and studied SINGS sample. We discuss constraints on the parameters and show the advantages of our MCMC sampling method in terms of accuracy of the results and optimization of CPU time.
An important task in machine learning and statistics is the approximation of a probability measure by an empirical measure supported on a discrete point set. Stein Points are a class of algorithms for this task, which proceed by sequentially minimising a Stein discrepancy between the empirical measure and the target and, hence, require the solution of a non-convex optimisation problem to obtain each new point. This paper removes the need to solve this optimisation problem by, instead, selecting each new point based on a Markov chain sample path. This significantly reduces the computational cost of Stein Points and leads to a suite of algorithms that are straightforward to implement. The new algorithms are illustrated on a set of challenging Bayesian inference problems, and rigorous theoretical guarantees of consistency are established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا