No Arabic abstract
Selection among alternative theoretical models given an observed data set is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty: it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the MCMC algorithm and convergence is correspondingly slow. Here we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose inter-model jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient global proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher-dimensional spaces efficiently.
In most sampling algorithms, including Hamiltonian Monte Carlo, transition rates between states correspond to the probability of making a transition in a single time step, and are constrained to be less than or equal to 1. We derive a Hamiltonian Monte Carlo algorithm using a continuous time Markov jump process, and are thus able to escape this constraint. Transition rates in a Markov jump process need only be non-negative. We demonstrate that the new algorithm leads to improved mixing for several example problems, both by evaluating the spectral gap of the Markov operator, and by computing autocorrelation as a function of compute time. We release the algorithm as an open source Python package.
The Laser Interferometer Space Antenna (LISA) defines new demands on data analysis efforts in its all-sky gravitational wave survey, recording simultaneously thousands of galactic compact object binary foreground sources and tens to hundreds of background sources like binary black hole mergers and extreme mass ratio inspirals. We approach this problem with an adaptive and fully automatic Reversible Jump Markov Chain Monte Carlo sampler, able to sample from the joint posterior density function (as established by Bayes theorem) for a given mixture of signals out of the box, handling the total number of signals as an additional unknown parameter beside the unknown parameters of each individual source and the noise floor. We show in examples from the LISA Mock Data Challenge implementing the full response of LISA in its TDI description that this sampler is able to extract monochromatic Double White Dwarf signals out of colored instrumental noise and additional foreground and background noise successfully in a global fitting approach. We introduce 2 examples with fixed number of signals (MCMC sampling), and 1 example with unknown number of signals (RJ-MCMC), the latter further promoting the idea behind an experimental adaptation of the model indicator proposal densities in the main sampling stage. We note that the experienced runtimes and degeneracies in parameter extraction limit the shown examples to the extraction of a low but realistic number of signals.
Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating development of application specific implementations. This paper introduces posterior-based proposals (PBPs), a new type of MCMC update applicable to a huge class of statistical models (whose conditional dependence structures are represented by directed acyclic graphs). PBPs generates large joint updates in parameter and latent variable space, whilst retaining good acceptance rates (typically 33%). Evaluation against other approaches (from standard Gibbs / random walk updates to state-of-the-art Hamiltonian and particle MCMC methods) was carried out for widely varying model types: an individual-based model for disease diagnostic test data, a financial stochastic volatility model, a mixed model used in statistical genetics and a population model used in ecology. Whilst different methods worked better or worse in different scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best approach (by up to a factor of 10). PBPs therefore represent an additional general purpose technique that can be usefully applied in a wide variety of contexts.
We present a new Monte Carlo Markov Chain algorithm for CMB analysis in the low signal-to-noise regime. This method builds on and complements the previously described CMB Gibbs sampler, and effectively solves the low signal-to-noise inefficiency problem of the direct Gibbs sampler. The new algorithm is a simple Metropolis-Hastings sampler with a general proposal rule for the power spectrum, C_l, followed by a particular deterministic rescaling operation of the sky signal. The acceptance probability for this joint move depends on the sky map only through the difference of chi-squared between the original and proposed sky sample, which is close to unity in the low signal-to-noise regime. The algorithm is completed by alternating this move with a standard Gibbs move. Together, these two proposals constitute a computationally efficient algorithm for mapping out the full joint CMB posterior, both in the high and low signal-to-noise regimes.
We introduce a new Markov-Chain Monte Carlo (MCMC) approach designed for efficient sampling of highly correlated and multimodal posteriors. Parallel tempering, though effective, is a costly technique for sampling such posteriors. Our approach minimizes the use of parallel tempering, only using it for a short time to tune a new jump proposal. For complex posteriors we find efficiency improvements up to a factor of ~13. The estimation of parameters of gravitational-wave signals measured by ground-based detectors is currently done through Bayesian inference with MCMC one of the leading sampling methods. Posteriors for these signals are typically multimodal with strong non-linear correlations, making sampling difficult. As we enter the advanced-detector era, improved sensitivities and wider bandwidths will drastically increase the computational cost of analyses, demanding more efficient search algorithms to meet these challenges.