Do you want to publish a course? Click here

Geometric phase of neutrino propagating through dissipative matter

101   0   0.0 ( 0 )
 Added by Jacek Syska Mr.
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We study the geometric phase (GP) in neutrino oscillation for both Dirac and Majorana neutrinos. We apply the kinematic generalization of the GP to quantum open systems that take into account the coupling to a dissipative environment. In the dissipationless case, the GP does not depend on the Majorana angle. It is not the case in the presence of dissipation and hence the GP can serve as a tool determining the type of the Dirac vs the Majorana neutrino.



rate research

Read More

We study the total and the geometric phase associated with neutrino mixing and we show that the phases produced by the neutrino oscillations have different values depending on the representation of the mixing matrix and on the neutrino nature. Therefore the phases represent a possible probe to distinguish between Dirac and Majorana neutrinos.
We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multi-body kaon decays and Drell-Yan production of $W$ bosons at the LHC.
The geometric (Berry) phase of a two-level system in a dissipative environment is analyzed by using the second-quantized formulation, which provides a unified and gauge-invariant treatment of adiabatic and nonadiabatic phases and is thus applicable to a quantitative analysis of transitional regions away from ideal adiabaticity. In view of the recent experimental observation of the Berry phase in a superconducting qubit, we illustrate our formulation for a concrete adiabatic case in the Ohmic dissipation. The correction to the total phase together with the geometry-dependent dephasing time is given in a transparent way. The behavior of the geometric phase away from ideal adiabaticity is also analyzed in some detail.
304 - J. Syska , J. Dajka , 2013
We analyze the geometric phase in the neutrino oscillation phenomenon, which follows the pion decay pi+ --> mu+ + u_{mu}. Its value pi is consistent with the present-day global analysis of the Standard Model neutrino oscillation parameters, accounting for the nonzero value of theta_13. The impact of the charge-parity (CP) violating phase delta, the neutrinos nature, and the new physics is discussed.
Broadening of the transverse momentum of a parton propagating through a medium is treated using the color dipole formalism, which has the advantage of being a well developed phenomenology in deep-inelastic scattering and soft processes. Within this approach, nuclear broadening should be treated as color filtering, i.e. absorption of large-size dipoles leading to diminishing (enlarged) transverse separation (momentum). We also present a more intuitive derivation based on the classic scattering theory of Moli`ere. This derivation helps to understand the origin of the dipole cross section, part of which comes from attenuation of the quark, while another part is due to multiple interactions of the quark. It also demonstrates that the lowest-order rescattering term provides an A-dependence very different from the generally accepted A^{1/3} behavior. The effect of broadening increases with energy, and we evaluate it using different phenomenological models for the unintegrated gluon density. Although the process is dominated by soft interactions, the phenomenology we use is tested using hadronic cross section data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا