Do you want to publish a course? Click here

Gamma-ray emission from massive stars interacting with AGN jets

153   0   0.0 ( 0 )
 Added by Anabella Araudo
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dense populations of stars surround the nuclear regions of galaxies. In active galactic nuclei, these stars can interact with the relativistic jets launched by the supermasive black hole. In this work, we study the interaction of early-type stars with relativistic jets in active galactic nuclei. A bow-shaped double-shock structure is formed as a consequence of the interaction of the jet and the stellar wind of each early-type star. Particles can be accelerated up to relativistic energies in these shocks and emit high-energy radiation. We compute, considering different stellar densities of the galactic core, the gamma-ray emission produced by non-thermal radiative processes. This radiation may be significant in some cases, and its detection might yield valuable information on the properties of the stellar population in the galaxy nucleus, as well as on the relativistic jet. This emission is expected to be particularly relevant for nearby non-blazar sources.



rate research

Read More

Dense populations of stars surround the nuclear regions of galaxies. In this work, we study the interaction of a WR star with relativistic jets in active galactic nuclei. A bow-shaped double-shock structure will form as a consequence of the interaction of the jet and the wind of the star. Particles can be accelerated up to relativistic energies in these shocks and emit high-energy radiation. We compute the produced gamma-ray emission obtaining that this radiation may be significant. This emission is expected to be particularly relevant for nearby non-blazar sources.
We study the interaction of early-type stars with the jets of active galactic nuclei. A bow-shock will form as a consequence of the interaction of the jet with the winds of stars and particles can be accelerated up to relativistic energies in these shocks. We compute the non-thermal radiation produced by relativistic electrons from radio to gamma-rays. This radiation may be significant, and its detection might yield information on the properties of the stellar population in the galaxy nucleus, as well as on the relativistic jet. This emission is expected to be relevant for nearby non-blazar sources.
122 - T. Hovatta 2010
We have compared the parsec-scale jet linear polarization properties of the Fermi LAT-detected and non-detected sources in the complete flux-density-limited (MOJAVE-1) sample of highly beamed AGN. Of the 123 MOJAVE sources, 30 were detected by the LAT during its first three months of operation. We find that during the era since the launch of Fermi, the unresolved core components of the LAT-detected jets have significantly higher median fractional polarization at 15 GHz. This complements our previous findings that these LAT sources have higher apparent jet speeds, brightness temperatures and Doppler factors, and are preferentially found in higher activity states.
Stellar flares have been extensively studied in soft X-rays (SXR) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DG CVn binary star system, which triggered Swift/BAT as if it was a $gamma$-ray burst (GRB). In this work, we estimate the expected $gamma$-ray emission from DG CVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding $pi^0$-decay $gamma$-ray emission could be detectable from stellar superflares with ground-based $gamma$-ray telescopes. On the other hand, the detection of $gamma$-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M-dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of $gamma$-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.
275 - Yael Naze 2014
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ~60% of stars compiled in the catalog of Petit et al. 2013). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss-rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower-Mdot B stars and flattens for the more luminous, higher-Mdot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g. higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest some temperature stratification to exist in massive stars magnetospheres.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا