Do you want to publish a course? Click here

Enhancement models of momentum densities of annihilating electron-positron pairs: the many-body picture of natural geminals

388   0   0.0 ( 0 )
 Added by Ilja Makkonen
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbitals and natural geminals (electron-positron pair wave functions) of the quantum theory of many-particle systems. We find that an expression based on the natural geminals provides an exact, unique and compact expression for the momentum density. The natural geminals can be used to define and determine enhancement factors for enhancement models going beyond the independent-particle model for a better understanding of results of positron annihilation experiments.



rate research

Read More

Measuring the Doppler broadening of the positron annihilation radiation or the angular correlation between the two annihilation gamma quanta reflects the momentum distribution of electrons seen by positrons in the material.Vacancy-type defects in solids localize positrons and the measured spectra are sensitive to the detailed chemical and geometric environments of the defects. However, the measured information is indirect and when using it in defect identification comparisons with theoretically predicted spectra is indispensable. In this article we present a computational scheme for calculating momentum distributions of electron-positron pairs annihilating in solids. Valence electron states and their interaction with ion cores are described using the all-electron projector augmented-wave method, and atomic orbitals are used to describe the core states. We apply our numerical scheme to selected systems and compare three different enhancement (electron-positron correlation) schemes previously used in the calculation of momentum distributions of annihilating electron-positron pairs within the density-functional theory. We show that the use of a state-dependent enhancement scheme leads to better results than a position-dependent enhancement factor in the case of ratios of Doppler spectra between different systems. Further, we demonstrate the applicability of our scheme for studying vacancy-type defects in metals and semiconductors. Especially we study the effect of forces due to a positron localized at a vacancy-type defect on the ionic relaxations.
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most basic model considered by Stoner, is suppressed due to many-body correlations as speculated already by Wigner, and a possible ferromagnetic transition lowering the density is precluded by the formation of the Wigner crystal.
The effect of linear chirp frequency on the process of electron-positron pairs production from vacuum in the combined potential wells is investigated by computational quantum field theory. Numerical results of electron number and energy spectrum under different frequency modulation parameters are obtained. By comparing with the fixed frequency, it is found that frequency modulation has a significant enhancement effect on the number of electrons. Especially when the frequency is small, appropriate frequency modulation enhances multiphoton processes in pair creation, thus promoting the pair creation. However, the number of electrons created by high frequency oscillating combined potential wells decreases after frequency modulation due to the phenomenon of high frequency suppression. The contours of the number of electrons varying with frequency and frequency modulation parameters are given, which may provide theoretical reference for possible experiments.
Impressive advances in the field of molecular spintronics allow one to study electron transport through individual magnetic molecules embedded between metallic leads in the purely quantum regime of single electron tunneling. Besides fundamental interest, this experimental setup, in which a single molecule is manipulated by electronic means, provides the elementary units of possible forthcoming technological applications, ranging from spin valves to transistors and qubits for quantum information processing. Theoretically, while for weakly correlated molecular junctions established first-principles techniques do enable the system-specific description of transport phenomena, methods of similar power and flexibility are still lacking for junctions involving strongly correlated molecular nanomagnets. Here we propose an efficient scheme based on the ab initio construction of material-specific Hubbard models and on the master-equation formalism. We apply this approach to a representative case, the Ni$_2$ molecular spin dimer, in the regime of weak molecule-electrode coupling, the one relevant for quantum-information applications. Our approach allows us to study in a realistic setting many-body effects such as current suppression and negative differential conductance. We think that this method has the potential for becoming a very useful tool for describing transport phenomena in strongly correlated molecules.
We give a brief summary of the current status of the electron many-body problem in graphene. We claim that graphene has intrinsic dielectric properties which should dress the interactions among the quasiparticles, and may explain why the observation of electron-electron renormalization effects has been so elusive in the recent experiments. We argue that the strength of Coulomb interactions in graphene may be characterized by an effective fine structure constant given by $alpha^{star}(mathbf{k},omega)equiv2.2/epsilon(mathbf{k},omega)$, where $epsilon(mathbf{k},omega)$ is the dynamical dielectric function. At long wavelengths, $alpha^{star}(mathbf{k},omega)$ appears to have its smallest value in the static regime, where $alpha^{star}(mathbf{k}to0,0)approx1/7$ according to recent inelastic x-ray measurements, and the largest value in the optical limit, where $alpha^{star}(0,omega)approx2.6$. We conclude that the strength of Coulomb interactions in graphene is not universal, but depends highly on the scale of the phenomenon of interest. We propose a prescription in order to reconcile different experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا