No Arabic abstract
We give a brief summary of the current status of the electron many-body problem in graphene. We claim that graphene has intrinsic dielectric properties which should dress the interactions among the quasiparticles, and may explain why the observation of electron-electron renormalization effects has been so elusive in the recent experiments. We argue that the strength of Coulomb interactions in graphene may be characterized by an effective fine structure constant given by $alpha^{star}(mathbf{k},omega)equiv2.2/epsilon(mathbf{k},omega)$, where $epsilon(mathbf{k},omega)$ is the dynamical dielectric function. At long wavelengths, $alpha^{star}(mathbf{k},omega)$ appears to have its smallest value in the static regime, where $alpha^{star}(mathbf{k}to0,0)approx1/7$ according to recent inelastic x-ray measurements, and the largest value in the optical limit, where $alpha^{star}(0,omega)approx2.6$. We conclude that the strength of Coulomb interactions in graphene is not universal, but depends highly on the scale of the phenomenon of interest. We propose a prescription in order to reconcile different experiments.
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most basic model considered by Stoner, is suppressed due to many-body correlations as speculated already by Wigner, and a possible ferromagnetic transition lowering the density is precluded by the formation of the Wigner crystal.
We study the zero-temperature many-body properties of twisted bilayer graphene with a twist angle equal to the so-called `first magic angle. The system low-energy single-electron spectrum consists of four (eight, if spin label is accounted) weakly-dispersing partially degenerate bands, each band accommodating one electron per Moir{{e}} cell per spin projection. This weak dispersion makes electrons particularly susceptible to the effects of interactions. Introducing several excitonic order parameters with spin-density-wave-like structure, we demonstrate that (i)~the band degeneracy is partially lifted by the interaction, and (ii)~the details of the low-energy spectrum becomes doping-dependent. For example, at or near the undoped state, interactions separate the eight bands into two quartets (one quartet is almost filled, the other is almost empty), while for two electrons per Moir{e} cell, the quartets are pulled apart, and doublets emerge. When the doping is equal to one or three electrons per cell, the doublets split into singlets. Hole doping produces similar effects. As a result, electronic properties (e.g., the density of states at the Fermi energy) demonstrate oscillating dependence on the doping concentration. This allows us to reproduce qualitatively the behavior of the conductance observed recently in experiments [Cao et al., Nature {bf 556}, 80 (2018)]. Near half-filling, the electronic spectrum loses hexagonal symmetry indicating the appearance of a many-body nematic state.
Motivated by the intriguing physics of quasi-2d fermionic systems, such as high-temperature superconducting oxides, layered transition metal chalcogenides or surface or interface systems, the development of many-body computational methods geared at including both local and non-local electronic correlations has become a rapidly evolving field. It has been realized, however, that the success of such methods can be hampered by the emergence of noncausal features in the effective or observable quantities involved. Here, we present a new approach of extending local many-body techniques such as dynamical mean field theory (DMFT) to nonlocal correlations, which preserves causality and has a physically intuitive interpretation. Our strategy has implications for the general class of DMFT-inspired many-body methods, and can be adapted to cluster, dual boson or dual fermion techniques with minimal effort.
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for increasing disorder the shells of constant energy supporting a systems eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of non-ergodic extended states in many-body systems discussed in the recent literature.
Impressive advances in the field of molecular spintronics allow one to study electron transport through individual magnetic molecules embedded between metallic leads in the purely quantum regime of single electron tunneling. Besides fundamental interest, this experimental setup, in which a single molecule is manipulated by electronic means, provides the elementary units of possible forthcoming technological applications, ranging from spin valves to transistors and qubits for quantum information processing. Theoretically, while for weakly correlated molecular junctions established first-principles techniques do enable the system-specific description of transport phenomena, methods of similar power and flexibility are still lacking for junctions involving strongly correlated molecular nanomagnets. Here we propose an efficient scheme based on the ab initio construction of material-specific Hubbard models and on the master-equation formalism. We apply this approach to a representative case, the Ni$_2$ molecular spin dimer, in the regime of weak molecule-electrode coupling, the one relevant for quantum-information applications. Our approach allows us to study in a realistic setting many-body effects such as current suppression and negative differential conductance. We think that this method has the potential for becoming a very useful tool for describing transport phenomena in strongly correlated molecules.