Do you want to publish a course? Click here

Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite, insight into shock induced changes in asteroid regoliths

105   0   0.0 ( 0 )
 Added by Tomas Kohout
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The mineralogy and physical properties of Chelyabinsk meteorites (fall, February 15, 2013) are presented. Three types of meteorite material are present, described as the light-colored, dark-colored, and impact-melt lithologies. All are of LL5 composition with the impact-melt lithology being close to whole-rock melt and the dark-colored lithology being shock-darkened due to partial melting of iron metal and sulfides. This enables us to study the effect of increasing shock on material with identical composition and origin. Based on the magnetic susceptibility, the Chelyabinsk meteorites are richer in metallic iron as compared to other LL chondrites. The measured bulk and grain densities and the porosity closely resemble other LL chondrites. Shock darkening does not have a significant effect on the material physical properties, but causes a decrease of reflectance and decrease in silicate absorption bands in the reflectance spectra. This is similar to the space weathering effects observed on asteroids. However, compared to space weathered materials, there is a negligible to minor slope change observed in impact-melt and shock-darkened meteorite spectra. Thus, it is possible that some dark asteroids with invisible silicate absorption bands may be composed of relatively fresh shock-darkened chondritic material.



rate research

Read More

The fall of the Annama meteorite occurred early morning (local time) on April 19, 2014 on the Kola Peninsula (Russia). Based on mineralogy and physical properties, Annama is a typical H chondrite. It has a high Ar-Ar age of 4.4 Ga. Its cosmic ray exposure history is atypical as it is not part of the large group of H chondrites with a prominent 7 - 8 Ma peak in the exposure age histograms. Instead, its exposure age is within uncertainty of a smaller peak at 30 pm 4 Ma. The results from short-lived radionuclides are compatible with an atmosperic pre-entry radius of 30 - 40 cm. However, based on noble gas and cosmogenic radionuclide data, Annama must have been part of a larger body (radius >65 cm) for a large part of its cosmic ray exposure history. The 10Be concentration indicates a recent (3 - 5 Ma) breakup which may be responsible for the Annama parent body size reduction to 30 - 35 cm pre-entry radius.
An asteroid family is typically formed when a larger parent body undergoes a catastrophic collisional disruption, and as such family members are expected to show physical properties that closely trace the composition and mineralogical evolution of the parent. Recently a number of new datasets have been released that probe the physical properties of a large number of asteroids, many of which are members of identified families. We review these data sets and the composite properties of asteroid families derived from this plethora of new data. We also discuss the limitations of the current data, and the open questions in the field.
251 - S. Potin , P.Beck , L. Bonal 2020
We present here several laboratory analyses performed on the freshly fallen Mukundpura CM chondrite. Results of infrared transmission spectroscopy, thermogravimetry analysis and reflectance spectroscopy show that Mukundpura is mainly composed of phyllosilicates. The rare earth trace elements composition and ultrahigh resolution mass spectrometry of the soluble organic matter (SOM) give results consistent with CM chondrites. Finally, Raman spectroscopy shows no signs of thermal alteration of the meteorite. All the results agree that Mukundpura has been strongly altered by water on its parent body. Comparison of the results obtained on the meteorite with those of other chondrites of known petrologic types lead to the conclusion that Mukundpura is similar to CM1 chondrites, which differs from its original classification as a CM2.
We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {mu}m) of the Infrared Array Camera and detected the target within the 2{sigma} positional uncertainty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be 6 (+4/-2) m in diameter with a geometric albedo of 0.3 (+0.4/-0.2) (uncertainties are 1{sigma}). We find the asteroids most probable bulk density to be 1.1 (+0.7/-0.5) g cm^{-3}, which implies a total mass of (50-350) t and a macroporosity of >=65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests 2011 MD to be a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.
Potentially hazardous asteroids (PHAs) represent a unique opportunity for physical characterization during their close approaches to Earth. The proximity of these asteroids makes them accessible for sample-return and manned missions, but could also represent a risk for life on Earth in the event of collision. Therefore, a detailed mineralogical analysis is a key component in planning future exploration missions and developing appropriate mitigation strategies. In this study we present near-infrared spectra (0.7-2.55 microns) of PHA (214869) 2007 PA8 obtained with the NASA Infrared Telescope Facility during its close approach to Earth on November 2012. The mineralogical analysis of this asteroid revealed a surface composition consistent with H ordinary chondrites. In particular, we found that the olivine and pyroxene chemistries of 2007 PA8 are Fa18(Fo82) and Fs16, respectively. The olivine-pyroxene abundance ratio was estimated to be 47%. This low olivine abundance and the measured band parameters, close to the H4 and H5 chondrites, suggest that the parent body of 2007 PA8 experienced thermal metamorphism before being catastrophically disrupted. Based on the compositional affinity, proximity to the J5:2 resonance, and estimated flux of resonant objects we determined that the Koronis family is the most likely source region for 2007 PA8.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا