Do you want to publish a course? Click here

Asymptotic normality and optimalities in estimation of large Gaussian graphical models

149   0   0.0 ( 0 )
 Added by Zhao Ren
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

The Gaussian graphical model, a popular paradigm for studying relationship among variables in a wide range of applications, has attracted great attention in recent years. This paper considers a fundamental question: When is it possible to estimate low-dimensional parameters at parametric square-root rate in a large Gaussian graphical model? A novel regression approach is proposed to obtain asymptotically efficient estimation of each entry of a precision matrix under a sparseness condition relative to the sample size. When the precision matrix is not sufficiently sparse, or equivalently the sample size is not sufficiently large, a lower bound is established to show that it is no longer possible to achieve the parametric rate in the estimation of each entry. This lower bound result, which provides an answer to the delicate sample size question, is established with a novel construction of a subset of sparse precision matrices in an application of Le Cams lemma. Moreover, the proposed estimator is proven to have optimal convergence rate when the parametric rate cannot be achieved, under a minimal sample requirement. The proposed estimator is applied to test the presence of an edge in the Gaussian graphical model or to recover the support of the entire model, to obtain adaptive rate-optimal estimation of the entire precision matrix as measured by the matrix $ell_q$ operator norm and to make inference in latent variables in the graphical model. All of this is achieved under a sparsity condition on the precision matrix and a side condition on the range of its spectrum. This significantly relaxes the commonly imposed uniform signal strength condition on the precision matrix, irrepresentability condition on the Hessian tensor operator of the covariance matrix or the $ell_1$ constraint on the precision matrix. Numerical results confirm our theoretical findings. The ROC curve of the proposed algorithm, Asymptotic Normal Thresholding (ANT), for support recovery significantly outperforms that of the popular GLasso algorithm.

rate research

Read More

We consider the problem of constructing nonparametric undirected graphical models for high-dimensional functional data. Most existing statistical methods in this context assume either a Gaussian distribution on the vertices or linear conditional means. In this article we provide a more flexible model which relaxes the linearity assumption by replacing it by an arbitrary additive form. The use of functional principal components offers an estimation strategy that uses a group lasso penalty to estimate the relevant edges of the graph. We establish statistical guarantees for the resulting estimators, which can be used to prove consistency if the dimension and the number of functional principal components diverge to infinity with the sample size. We also investigate the empirical performance of our method through simulation studies and a real data application.
Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based on an oracle inequality and a minimax lower bound. The covariance matrix of the model is approximated by a block-diagonal matrix. The structure of this matrix is detected by thresholding the sample covariance matrix, where the threshold is selected using the slope heuristic. Based on the block-diagonal structure of the covariance matrix, the estimation problem is divided into several independent problems: subsequently, the network of dependencies between variables is inferred using the graphical lasso algorithm in each block. The performance of the procedure is illustrated on simulated data. An application to a real gene expression dataset with a limited sample size is also presented: the dimension reduction allows attention to be objectively focused on interactions among smaller subsets of genes, leading to a more parsimonious and interpretable modular network.
89 - Mathias Drton , Elina Robeva , 2018
Directed graphical models specify noisy functional relationships among a collection of random variables. In the Gaussian case, each such model corresponds to a semi-algebraic set of positive definite covariance matrices. The set is given via parametrization, and much work has gone into obtaining an implicit description in terms of polynomial (in-)equalities. Implicit descriptions shed light on problems such as parameter identification, model equivalence, and constraint-based statistical inference. For models given by directed acyclic graphs, which represent settings where all relevant variables are observed, there is a complete theory: All conditional independence relations can be found via graphical $d$-separation and are sufficient for an implicit description. The situation is far more complicated, however, when some of the variables are hidden (or in other words, unobserved or latent). We consider models associated to mixed graphs that capture the effects of hidden variables through correlated error terms. The notion of trek separation explains when the covariance matrix in such a model has submatrices of low rank and generalizes $d$-separation. However, in many cases, such as the infamous Verma graph, the polynomials defining the graphical model are not determinantal, and hence cannot be explained by $d$-separation or trek-separation. In this paper, we show that these constraints often correspond to the vanishing of nested determinants and can be graphically explained by a notion of restricted trek separation.
We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which correspond to the observed variables. We give a graphical condition that is sufficient for the Jacobian matrix of the parametrization map to be full rank, which entails that the parametrization is generically finite-to-one, a fact that is sometimes also referred to as local identifiability. We also derive a graphical condition that is necessary for such identifiability. Finally, we give a condition under which generic parameter identifiability can be determined from identifiability of a model associated with a subgraph. The power of these criteria is assessed via an exhaustive algebraic computational study on models with 4, 5, and 6 observable variables.
We propose a modern method to estimate population size based on capture-recapture designs of K samples. The observed data is formulated as a sample of n i.i.d. K-dimensional vectors of binary indicators, where the k-th component of each vector indicates the subject being caught by the k-th sample, such that only subjects with nonzero capture vectors are observed. The target quantity is the unconditional probability of the vector being nonzero across both observed and unobserved subjects. We cover models assuming a single constraint (identification assumption) on the K-dimensional distribution such that the target quantity is identified and the statistical model is unrestricted. We present solutions for linear and non-linear constraints commonly assumed to identify capture-recapture models, including no K-way interaction in linear and log-linear models, independence or conditional independence. We demonstrate that the choice of constraint has a dramatic impact on the value of the estimand, showing that it is crucial that the constraint is known to hold by design. For the commonly assumed constraint of no K-way interaction in a log-linear model, the statistical target parameter is only defined when each of the $2^K - 1$ observable capture patterns is present, and therefore suffers from the curse of dimensionality. We propose a targeted MLE based on undersmoothed lasso model to smooth across the cells while targeting the fit towards the single valued target parameter of interest. For each identification assumption, we provide simulated inference and confidence intervals to assess the performance on the estimator under correct and incorrect identifying assumptions. We apply the proposed method, alongside existing estimators, to estimate prevalence of a parasitic infection using multi-source surveillance data from a region in southwestern China, under the four identification assumptions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا