Do you want to publish a course? Click here

Ground state of the spin-1/2 chain of green dioptase at high fields

147   0   0.0 ( 0 )
 Added by Takayuki Goto
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The gem-stone dioptase Cu6Si6O18.6H2O has a chiral crystal structure of equilateral triangular helices consisting of Cu-3d spins. It shows an antiferromagnetic order with an easy axis along c at TN = 15.5 K under zero field, and a magnetization jump at HC = 13.5 T when the field is applied along c-axis. By 29Si-NMR measurements, we have revealed that the high-field state is essentially the two sub-lattice structure, and that the component within ab-plane is collinear. The result indicates no apparent match with the geometrical pattern of helical spin chain.



rate research

Read More

The high-field magnetic properties and magnetic order of the gem mineral green dioptase Cu$_6[$Si$_6$O$_{18}]cdot 6$H$_2$O have been studied by means of single-crystal neutron diffraction in magnetic fields up to $21~$T and magnetization measurements up to $30~$T. In zero field, the Cu$^{2+}$-moments in the antiferromagnetic chains are oriented along the $c$-axis with a small off-axis tilt. For a field applied parallel to the $c$-axis, the magnetization shows a spin-flop-like transition at $B^*=12.2~$T at $1.5~$K. Neutron diffraction experiments show a smooth behavior in the intensities of the magnetic reflections without any change in the periodicity of the magnetic structure. Bulk and microscopic observations are well described by a model of ferromagnetically coupled antiferromagnetic $XXZ$ spin-$frac{1}{2}$ chains, taking into account a change of the local easy-axis direction. We demonstrate that the magnetic structure evolves smoothly from a deformed Neel state at low fields to a deformed spin-flop state in a high field via a strong crossover around $B^*$. The results are generalized for different values of interchain coupling and spin anisotropy.
Frustrated spin-1/2 chains, despite the apparent simplicity, exhibit remarkably rich phase diagram comprising vector-chiral (VC), spin-density-wave (SDW) and multipolar/spin-nematic phases as a function of the magnetic field. Here we report a study of $beta$-TeVO$_4$, an archetype of such compounds, based on magnetization and neutron diffraction measurements up to 25 T. We find the transition from the helical VC ground state to the SDW state at $sim$3 T for the magnetic field along the $a$ and $c$ crystal axes, and at $sim$9 T for the field along the $b$ axis. The high-field (HF) state, existing above $sim$18 T, i.e., above $sim$1/2 of the saturated magnetization, is an incommensurate magnetically ordered state and not the spin-nematic state, as theoretically predicted for the isotropic frustrated spin-1/2 chain. The HF state is likely driven by sizable interchain interactions and symmetric intrachain anisotropies uncovered in previous studies. Consequently, the potential existence of the spin nematic phase in $beta$-TeVO$_4$ is limited to a narrow field range, i.e., a few tenths of a tesla bellow the saturation of the magnetization, as also found in other frustrated spin-1/2 chain compounds.
We report a single-crystal study on the magnetism of the rare-earth compound PrTiNbO$_6$ that experimentally realizes the zigzag pseudospin-$frac{1}{2}$ quantum antiferromagnetic chain model. Random crystal electric field caused by the site mixing between non-magnetic Ti$^{4+}$ and Nb$^{5+}$, results in the non-Kramers ground state quasi-doublet of Pr$^{3+}$ with the effective pseudospin-$frac{1}{2}$ Ising moment. Despite the antiferromagnetic intersite coupling of about 4 K, no magnetic freezing is detected down to 0.1 K, whilst the system approaches its ground state with almost zero residual spin entropy. At low temperatures, a sizable gap of about 1 K is observed in zero field. We ascribe this gap to off-diagonal anisotropy terms in the pseudospin Hamiltonian, and argue that rare-earth oxides open an interesting venue for studying magnetism of quantum spin chains.
We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be mapped to a spin-1 spatially anisotropic triangular lattice. The magnetization curve exhibits gapped behavior indicative of a dominant one-dimensional (1D) AF correlation. In the field-induced gapless phase, the specific heat and magnetic susceptibility show a phase transition to an ordered state with 2D characteristics. These results indicate that the spin-1 Haldane state is extended to the 2D system. We demonstrate that the gapped ground state observed in the present spin-1/2 frustrated square lattice originates from the one-dimensionalization caused by frustration.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the successful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا