Do you want to publish a course? Click here

A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 10^7

103   0   0.0 ( 0 )
 Added by Trevor Arp
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe an autocollimating optical angle sensor with a dynamic range of 9 mrad and nrad/sqrt(Hz) sensitivity at frequencies from 5 mHz to 3 kHz. This work improves the standard multi-slit autocollimator design by adding two optical components, a reference mirror and a condensing lens. This autocollimator makes a differential measurement between a reference mirror and a target mirror, suppressing common-mode noise sources. The condensing lens reduces optical aberrations, increases intensity, and improves image quality. To further improve the stability of the device at low frequencies the body of the autocollimator is designed to reduce temperature variations and their effects. A new data processing technique was developed in order to suppress the effects of imperfections in the CCD.



rate research

Read More

Accurate readout of low-power optical higher-order spatial modes is of increasing importance to the precision metrology community. Mode sensors are used to prevent mode mismatches from degrading quantum and thermal noise mitigation strategies. Direct mode analysis sensors (MODAN) are a promising technology for real-time monitoring of arbitrary higher-order modes. We demonstrate MODAN with photo-diode readout to mitigate the typically low dynamic range of CCDs. We look for asymmetries in the response our sensor to break degeneracies in the relative alignment of the MODAN and photo-diode and consequently improve the dynamic range of the mode sensor. We provide a tolerance analysis and show methodology that can be applied for sensors beyond first-order spatial modes.
79 - D. G. Matei 2017
We report on two ultrastable lasers each stabilized to independent silicon Fabry-Perot cavities operated at 124 K. The fractional frequency instability of each laser is completely determined by the fundamental thermal Brownian noise of the mirror coatings with a flicker noise floor of $4 times 10^{-17}$ for integration times between 0.8 s and a few tens of seconds. We rigorously treat the notorious divergencies encountered with the associated flicker frequency noise and derive methods to relate this noise to observable and practically relevant linewidths and coherence times. The individual laser linewidth obtained from the phase noise spectrum or the direct beat note between the two lasers can be as small as 5 mHz at 194 THz. From the measured phase evolution between the two laser fields we derive usable phase coherence times for different applications of 11 s and 60 s.
180 - I. Altarev , M. Bales , D. H. Beck 2015
We present a magnetically shielded environment with a damping factor larger than one million at the mHz frequency regime and an extremely low field and gradient over an extended volume. This extraordinary shielding performance represents an improvement of the state of the art in damping the difficult regime of very low-frequency distortions by more than an order of magnitude. This technology enables a new generation of high precision measurements in fundamental physics and metrology, including searches for new physics far beyond the reach of accelerator-based experiments. We discuss the technical realization of the shield with its improvements in design.
416 - M.Danilov 2013
DANSS is a highly segmented 1m^3 plastic scintillator detector. Its 2500 scintillator strips have a Gd loaded reflective cover. Light is collected with 3 wave length shifting fibers per strip and read out with 50 PMTs and 2500 SiPMs. The DANSS will be installed under the industrial 3 GW reactor of the Kalinin Nuclear Power Plant at distances varying from 9.7m to 12.2m from the reactor core. Tests of the detector prototype DANSSino demonstrated that in spite of a small size (20x20x100 cm^3) it is quite sensitive to reactor antineutrinos, detecting about 70 Inverse Beta Decay events per day with the signal-to-background ratio of about unity. The prototype tests have demonstrated feasibility to reach the design performance of the DANSS detector. The DANSS experiment will detect about 10 thousand antineutrino events per day with a background below ~1%. Detector will be calibrated every day and its position will be changed frequently to reduce systematic errors. These features will provide a high sensitivity to reactor antineutrino oscillations to sterile neutrinos, suggested recently to explain a so-called reactor anomaly. Data taking will start already next year.
We present design and realization of an ultra-broadband optical spectrometer capable of measuring the spectral intensity of multi-octave-spanning light sources on a single-pulse basis with a dynamic range of up to 8 orders of magnitude. The instrument is optimized for the characterization of the temporal structure of femtosecond long electron bunches by analyzing the emitted coherent transition radiation (CTR) spectra. The spectrometer operates within the spectral range of 250nm to 11.35$mu$m, corresponding to 5.5 optical octaves. This is achieved by dividing the signal beam into three spectral groups, each analyzed by a dedicated spectrometer and detector unit. The complete instrument was characterized with regard to wavelength, relative spectral sensitivity, and absolute photo-metric sensitivity, always accounting for the light polarization and comparing different calibration methods. Finally, the capability of the spectrometer is demonstrated with a CTR measurement of a laser wakefield accelerated electron bunch, enabling to determine temporal pulse structures at unprecedented resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا