Do you want to publish a course? Click here

Mid-Infrared Atomic Fine-Structure Emission Line Spectra of Luminous Infrared Galaxies: Spitzer/IRS Spectra of the GOALS Sample

175   0   0.0 ( 0 )
 Added by Hanae Inami
 Publication date 2013
  fields Physics
and research's language is English
 Authors H. Inami




Ask ChatGPT about the research

We present the data and our analysis of MIR fine-structure emission lines detected in Spitzer/IRS high-res spectra of 202 local LIRGs observed as part of the GOALS project. We detect emission lines of [SIV], [NeII], [NeV], [NeIII], [SIII]18.7, [OIV], [FeII], [SIII]33.5, and [SiII]. Over 75% of our galaxies are classified as starburst (SB) sources in the MIR. We compare ratios of the emission line fluxes to stellar photo- and shock-ionization models to constrain the gas properties in the SB nuclei. Comparing the [SIV]/[NeII] and [NeIII]/[NeII] ratios to the Starburst99-Mappings III models with an instantaneous burst history, the line ratios suggest that the SB in our LIRGs have ages of 1-4.5Myr, metallicities of 1-2Z_sun, and ionization parameters of 2-8e7cm/s. Based on the [SIII]/[SIII] ratios, the electron density in LIRG nuclei has a median electron density of ~300cm-3 for sources above the low density limit. We also find that strong shocks are likely present in 10 SB sources. A significant fraction of the GOALS sources have resolved neon lines and 5 show velocity differences of >200km/s in [NeIII] or [NeV] relative to [NeII]. Furthermore, 6 SB and 5 AGN LIRGs show a trend of increasing line width with ionization potential, suggesting the possibility of a compact energy source and stratified ISM in their nuclei. We confirm a strong correlation between the [NeII]+[NeIII] emission, as well as [SIII]33.5, with both the IR luminosity and the 24um warm dust emission measured from the spectra. Finally, we find no correlation between the hardness of the radiation field or the line width and the ratio of the total IR to 8um emission (IR8). This may be because the IR luminosity and the MIR fine-structure lines are sensitive to different timescales over the SB, or that IR8 is more sensitive to the geometry of the warm dust region than the radiation field producing the HII region emission.



rate research

Read More

Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7micron silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of AGN indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6micron. We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.
We present the first principal component analysis (PCA) applied to a sample of 119 Spitzer Infrared Spectrograph (IRS) spectra of local ultraluminous infrared galaxies (ULIRGs) at z<0.35. The purpose of this study is to objectively and uniquely characterise the local ULIRG population using all information contained in the observed spectra. We have derived the first three principal components (PCs) from the covariance matrix of our dataset which account for over 90% of the variance. The first PC is characterised by dust temperatures and the geometry of the mix of source and dust. The second PC is a pure star formation component. The third PC represents an anti-correlation between star formation activity and a rising AGN. Using the first three PCs, we are able to accurately reconstruct most of the spectra in our sample. Our work shows that there are several factors that are important in characterising the ULIRG population, dust temperature, geometry, star formation intensity, AGN contribution, etc. We also make comparison between PCA and other diagnostics such as ratio of the 6.2 microns PAH emission feature to the 9.7 micron silicate absorption depth and other observables such as optical spectral type.
126 - S. Haan , J.A. Surace , L. Armus 2010
We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence (primarily due to a decrease of the bulge radius), while the bulge luminosity shows a small increase towards late merger stages. No significant increase of the bulge Sersic index is found. LIRGs that show no interaction features have on average a significantly larger bulge luminosity, suggesting that non merging LIRGs have larger bulge masses than merging LIRGs. This may be related to the flux limited nature of the sample and the fact that mergers can significantly boost the IR luminosity of otherwise low luminosity galaxies. We find that the projected nuclear separation is significantly smaller for ULIRGs (median value of 1.2 kpc) than for LIRGs (mean value of 6.7 kpc), suggesting that the LIRG phase appears earlier in mergers than the ULIRG phase.
We present Herschel observations of six fine-structure lines in 25 Ultraluminous Infrared Galaxies at z<0.27. The lines, [O III]52, [N III]57, [O I]63, [N II]122, [O I]145, and [C II]158, are mostly single gaussians with widths <600 km s-1 and luminosities of 10^7 - 10^9 Solar. There are deficits in the [O I]63/L_IR, [N II]/L_IR, [O I]145/L_IR, and [C II]/L_IR ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from PDRs or the ISM. We derive relations between far-IR line luminosities and both IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10^1 < n < 10^2.5 and 10^2.2 < G_0 < 10^3.6, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters; AGN activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.
56 - G. Helou , N. Y. Lu 2000
The mid-infrared spectra (2.5 to 5 and 5.7 to 11.6 mu) obtained by ISO-PHOT reveal the interstellar medium emission from galaxies powered by star formation to be strongly dominated by the aromatic features at 6.2, 7.7, 8.6 and 11.3 mu. Additional emission appears in-between the features, and an underlying continuum is clearly evident at 3-5 mu. This continuum would contribute about a third of the luminosity in the 3 to 13 mu range. The features together carry 5 to 30% of the 40-to-120 mu `FIR luminosity. The relative fluxes in individual features depend very weakly on galaxy parameters such as the far-infrared colors, direct evidence that the emitting particles are not in thermal equilibrium. The dip at 10 mu is unlikely to result from silicate absorption, since its shape is invariant among galaxies. The continuum component has a f_nu ~ nu^{0.65} shape between 3 and 5 mu and carries 1 to 4% of the FIR luminosity; its extrapolation to longer wavelengths falls well below the spectrum in the 6 to 12 mu range. This continuum component is almost certainly of non-stellar origin, and is probably due to fluctuating grains without aromatic features. The spectra reported here typify the integrated emission from the interstellar medium of the majority of star-forming galaxies, and could thus be used to obtain redshifts of highly extincted galaxies up to z=3 with SIRTF.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا