Do you want to publish a course? Click here

Far-infrared Fine-Structure Line Diagnostics of Ultraluminous Infrared Galaxies

258   0   0.0 ( 0 )
 Added by Duncan Farrah
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Herschel observations of six fine-structure lines in 25 Ultraluminous Infrared Galaxies at z<0.27. The lines, [O III]52, [N III]57, [O I]63, [N II]122, [O I]145, and [C II]158, are mostly single gaussians with widths <600 km s-1 and luminosities of 10^7 - 10^9 Solar. There are deficits in the [O I]63/L_IR, [N II]/L_IR, [O I]145/L_IR, and [C II]/L_IR ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from PDRs or the ISM. We derive relations between far-IR line luminosities and both IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10^1 < n < 10^2.5 and 10^2.2 < G_0 < 10^3.6, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters; AGN activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.



rate research

Read More

511 - Tohru Nagao 2010
Although measuring the gas metallicity in galaxies at various redshifts is crucial to constrain galaxy evolutionary scenarios, only rest-frame optical emission lines have been generally used to measure the metallicity. This has prevented us to accurately measure the metallicity of dust-obscured galaxies, and accordingly to understand the chemical evolution of dusty populations, such as ultraluminous infrared galaxies. Here we propose diagnostics of the gas metallicity based on infrared fine structure emission lines, which are nearly unaffected by dust extinction even the most obscured systems. Specifically, we focus on fine-structure lines arising mostly from HII regions, not in photo-dissociation regions, to minimize the dependence and uncertainties of the metallicity diagnostics from various physical parameters. Based on photoionization models, we show that the emission-line flux ratio of ([OIII]51.80+[OIII]88.33)/[NIII]57.21 is an excellent tracer of the gas metallicity. The individual line ratios [OIII]51.80/[NIII]57.21 or [OIII]88.33/[NIII]57.21 can also be used as diagnostics of the metallicity, but they suffer a stronger dependence on the gas density. The line ratios [OIII]88.33/[OIII]51.80 and [NII]121.7/[NIII]57.21 can be used to measure and, therefore, account for the dependences on the of the gas density and ionization parameter, respectively. We show that these diagnostic fine-structure lines are detectable with Herschel in luminous infrared galaxies out z=0.4. Metallicity measurements with these fine-structure lines will be feasible at relatively high redshift (z=1 or more) with SPICA, the future infrared space observatory.
The Nitrogen-to-Oxygen (N/O) abundance ratio is an important diagnostic of galaxy evolution since the ratio is closely tied to the growth of metallicity and the star formation history in galaxies. Estimates for the N/O ratio are traditionally accomplished with optical lines that could suffer from extinction and excitation effects, so the N/O ratio is arguably measured better through far-infrared (far-IR) fine-structure lines. Here we show that the [N III]57$mu$m/[O III]52$mu$m line ratio, denoted $N3O3$, is a physically robust probe of N/O. This parameter is insensitive to gas temperature and only weakly dependent on electron density. Though it has a dependence on the hardness of the ionizing radiation field, we show that it is well corrected by including the [Ne III]15.5$mu$m/[Ne II]12.8$mu$m line ratio. We verify the method, and characterize its intrinsic uncertainties by comparing the results to photoionization models. We then apply our method to a sample of nearby galaxies using new observations obtained with SOFIA/FIFI-LS in combination with available Herschel/PACS data, and the results are compared with optical N/O estimates. We find evidence for a systematic offset between the far-IR and optically derived N/O ratio. We argue this is likely due to that our far-IR method is biased towards younger and denser H II regions, while the optical methods are biased towards older H II regions as well as diffuse ionized gas. This work provides a local template for studies of ISM abundance in the early Universe.
It has long been known that infrared fine structure lines of abundant ions, like the [O III] 88 micron line, can become optically thick in H II regions under certain high luminosity conditions. This could mitigate their potential as diagnostic tools, especially if the source is too dusty for optical spectroscopy to otherwise determine the systems parameters. We examined a series of photoionization calculations which were designed to push the nebulae into the limit where many IR lines should be quite optically thick. We find that radiative transfer effects do not significantly change the observed emission line spectrum. This is due to a combination of grain absorption of the hydrogen ionizing continuum and the fact that the correction for stimulated emission in these lines is large. Given these results, and the likelihood that real objects have non-thermal line broadening, it seems unlikely that line optical depth presents a problem in using these lines as diagnostics of the physical conditions or chemical composition.
188 - H. Inami 2013
We present the data and our analysis of MIR fine-structure emission lines detected in Spitzer/IRS high-res spectra of 202 local LIRGs observed as part of the GOALS project. We detect emission lines of [SIV], [NeII], [NeV], [NeIII], [SIII]18.7, [OIV], [FeII], [SIII]33.5, and [SiII]. Over 75% of our galaxies are classified as starburst (SB) sources in the MIR. We compare ratios of the emission line fluxes to stellar photo- and shock-ionization models to constrain the gas properties in the SB nuclei. Comparing the [SIV]/[NeII] and [NeIII]/[NeII] ratios to the Starburst99-Mappings III models with an instantaneous burst history, the line ratios suggest that the SB in our LIRGs have ages of 1-4.5Myr, metallicities of 1-2Z_sun, and ionization parameters of 2-8e7cm/s. Based on the [SIII]/[SIII] ratios, the electron density in LIRG nuclei has a median electron density of ~300cm-3 for sources above the low density limit. We also find that strong shocks are likely present in 10 SB sources. A significant fraction of the GOALS sources have resolved neon lines and 5 show velocity differences of >200km/s in [NeIII] or [NeV] relative to [NeII]. Furthermore, 6 SB and 5 AGN LIRGs show a trend of increasing line width with ionization potential, suggesting the possibility of a compact energy source and stratified ISM in their nuclei. We confirm a strong correlation between the [NeII]+[NeIII] emission, as well as [SIII]33.5, with both the IR luminosity and the 24um warm dust emission measured from the spectra. Finally, we find no correlation between the hardness of the radiation field or the line width and the ratio of the total IR to 8um emission (IR8). This may be because the IR luminosity and the MIR fine-structure lines are sensitive to different timescales over the SB, or that IR8 is more sensitive to the geometry of the warm dust region than the radiation field producing the HII region emission.
We investigate the correlation between far-infrared (FIR) and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), Spitzer, the Large Apex BOlometer CamerA (LABOCA), the Very Large Array (VLA) and the Giant Metre-wave Radio Telescope (GMRT) in the Extended Chandra Deep Field South (ECDFS). For a catalogue of BLAST 250-micron-selected galaxies, we re-measure the 70--870-micron flux densities at the positions of their most likely 24-micron counterparts, which have a median [interquartile] redshift of 0.74 [0.25, 1.57]. From these, we determine the monochromatic flux density ratio, q_250 = log_10 (S_250micron / S_1400MHz), and the bolometric equivalent, q_IR. At z ~= 0.6, where our 250-micron filter probes rest-frame 160-micron emission, we find no evolution relative to q_160 for local galaxies. We also stack the FIR and submm images at the positions of 24-micron- and radio-selected galaxies. The difference between q_IR seen for 250-micron- and radio-selected galaxies suggests star formation provides most of the IR luminosity in ~< 100-uJy radio galaxies, but rather less for those in the mJy regime. For the 24-micron sample, the radio spectral index is constant across 0 < z < 3, but q_IR exhibits tentative evidence of a steady decline such that q_IR is proportional to (1+z)^(-0.15 +/- 0.03) - significant evolution, spanning the epoch of galaxy formation, with major implications for techniques that rely on the FIR/radio correlation. We compare with model predictions and speculate that we may be seeing the increase in radio activity that gives rise to the radio background.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا