No Arabic abstract
Spins of negatively charged nitrogen-vacancy (NV$^-$) defects in diamond are among the most promising candidates for solid-state qubits. The fabrication of quantum devices containing these spin-carrying defects requires position-controlled introduction of NV$^-$ defects having excellent properties such as spectral stability, long spin coherence time, and stable negative charge state. Nitrogen ion implantation and annealing enable the positioning of NV$^-$ spin qubits with high precision, but to date, the coherence times of qubits produced this way are short, presumably because of the presence of residual radiation damage. In the present work, we demonstrate that a high temperature annealing at 1000$^circ$C allows 2 millisecond coherence times to be achieved at room temperature. These results were obtained for implantation-produced NV$^-$ defects in a high-purity, 99.99% $^{12}$C enriched single crystal chemical vapor deposited diamond. We discuss these remarkably long coherence times in the context of the thermal behavior of residual defect spins. [Published in Physical Review B {bf{88}}, 075206 (2013)]
We experimentally demonstrate over two orders of magnitude increase in the coherence time of nitrogen vacancy centres in diamond by implementing decoupling techniques. We show that equal pulse spacing decoupling performs just as well as non-periodic Uhrig decoupling and has the additional benefit that it allows us to take advantage of revivals in the echo (due to the coherent nature of the bath) to explore the longest coherence times. At short times, we can extend the coherence of particular quantum states out from T_2*=2.7 us out to an effective T_2 > 340 us. For preserving arbitrary states we show the experimental importance of using pulse sequences, that through judicious choice of the phase of the pulses, compensate the imperfections of individual pulses for all input states. At longer times we use these compensated sequences to enhance the echo revivals and show a coherence time of over 1.6 ms in ultra-pure natural abundance 13C diamond.
We assess independently the impact of high-temperature substrate annealing and metal deposition conditions on the coherence of transmon qubits in the standard 2D circuit-QED architecture. We restrict our study to devices made with aluminum interdigital capacitors on sapphire substrates. We record more than an order-of-magnitude improvement in the relaxation time of devices made with an annealed substrate, independent of whether a conventional evaporator or molecular beam epitaxy chamber was used to deposit the aluminum. We also infer similar levels of flux noise and photon shot noise through dephasing measurements on these devices. Our results indicate that substrate annealing plays a primary role in fabricating low-loss qubits, consistent with the hypothesis that substrate-air and substrate-metal interfaces are essential factors limiting the qubit lifetimes in superconducting circuits.
The superconducting transmon qubit is a leading platform for quantum computing and quantum science. Building large, useful quantum systems based on transmon qubits will require significant improvements in qubit relaxation and coherence times, which are orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that relaxation likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of two-dimensional transmon qubits have remained elusive for several years. Here, we fabricate two-dimensional transmon qubits that have both lifetimes and coherence times with dynamical decoupling exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. We have observed increased lifetimes for seventeen devices, indicating that these material improvements are robust, paving the way for higher gate fidelities in multi-qubit processors.
Methods of optical dynamic nuclear polarization (DNP) open the door to the replenishable hyperpolarization of nuclear spins, boosting their NMR/MRI signature by orders of magnitude. Nanodiamond powder rich in negatively charged Nitrogen Vacancy (NV) defect centers has recently emerged as one such promising platform, wherein 13C nuclei can be hyperpolarized through the optically pumped defects completely at room temperature and at low magnetic fields. Given the compelling possibility of relaying this 13C polarization to nuclei in external liquids, there is an urgent need for the engineered production of highly hyperpolarizable diamond particles. In this paper, we report on a systematic study of various material dimensions affecting optical 13C hyperpolarization in diamond particles -- especially electron irradiation and annealing conditions that drive NV center formation. We discover surprisingly that diamond annealing at elevated temperatures close to 1720C have remarkable effects on the hyperpolarization levels, enhancing them by upto 36-fold over materials annealed through conventional means. We unravel the intriguing material origins of these gains, and demonstrate they arise from a simultaneous improvement in NV electron relaxation time and coherence time, as well as the reduction of paramagnetic content, and an increase in 13C relaxation lifetimes. Overall this points to significant recovery of the diamond lattice from radiation damage as a result of the high-temperature annealing. Our work suggests methods for the guided materials production of fluorescent, 13C hyperpolarized, nanodiamonds and pathways for their use as multi-modal (optical and MRI) imaging and hyperpolarization agents.
We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precisely depth controlling by a moderately oxidative at 580{deg}C in air. By successive nanoscale etching, NV centers could be brought close to the diamond surface step by step, which enable us to trace the evolution of the number of NV centers remained in the chip and to study the depth dependence of coherence times of NV centers with the diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in their last about 22 nm before they finally disappeared, revealing a critical depth for the influence of rapid fluctuating surface spin bath. By monitoring the coherence time variation with depth, we could make a shallow NV center with long coherence time for detecting external spins with high sensitivity.