Do you want to publish a course? Click here

Photonic architecture for scalable quantum information processing in NV-diamond

183   0   0.0 ( 0 )
 Added by William Munro
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively-charged nitrogen vacancy centre in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.



rate research

Read More

104 - F. Jelezko , J. Wrachtrup 2005
Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are considered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploring long coherence time (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to the spin state readout via spin-selective scattering of photon. This also allows using of spin state as robust memory for flying qubits (photons).
We report on the design, fabrication, and preliminary testing of a 150 zone array built in a `surface-electrode geometry microfabricated on a single substrate. We demonstrate transport of atomic ions between legs of a `Y-type junction and measure the in-situ heating rates for the ions. The trap design demonstrates use of a basic component design library that can be quickly assembled to form structures optimized for a particular experiment.
Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.
We investigate a surface-mounted electrode geometry for miniature linear radio frequency Paul ion traps. The electrodes reside in a single plane on a substrate, and the pseudopotential minimum of the trap is located above the substrate at a distance on order of the electrodes lateral extent or separation. This architecture provides the possibility to apply standard microfabrication principles to the construction of multiplexed ion traps, which may be of particular importance in light of recent proposals for large-scale quantum computation based on individual trapped ions.
Photons have been a flagship system for studying quantum mechanics, advancing quantum information science, and developing quantum technologies. Quantum entanglement, teleportation, quantum key distribution and early quantum computing demonstrations were pioneered in this technology because photons represent a naturally mobile and low-noise system with quantum-limited detection readily available. The quantum states of individual photons can be manipulated with very high precision using interferometry, an experimental staple that has been under continuous development since the 19th century. The complexity of photonic quantum computing device and protocol realizations has raced ahead as both underlying technologies and theoretical schemes have continued to develop. Today, photonic quantum computing represents an exciting path to medium- and large-scale processing. It promises to out aside its reputation for requiring excessive resource overheads due to inefficient two-qubit gates. Instead, the ability to generate large numbers of photons---and the development of integrated platforms, improved sources and detectors, novel noise-tolerant theoretical approaches, and more---have solidified it as a leading contender for both quantum information processing and quantum networking. Our concise review provides a flyover of some key aspects of the field, with a focus on experiment. Apart from being a short and accessible introduction, its many references to in-depth articles and longer specialist reviews serve as a launching point for deeper study of the field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا