Do you want to publish a course? Click here

A stable compound of helium and sodium at high pressure

166   0   0.0 ( 0 )
 Added by Xiao Dong
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.



rate research

Read More

Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earths lower mantle. However, in icy gas giants as well as in exoplanets oxygen may be a more abundant constituent (Ref. 1,2). Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 94 GPa and T = 2150 K with the formation of the theoretically predicted I4/mcm MgO2 (Ref.3). Raman spectroscopy detects the presence of a peroxide ion (O22-) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may substitute MgO in rocky mantles and rocky planetary cores under highly oxidizing conditions.
The energy landscape of helium-nitrogen mixtures is explored by ab initio evolutionary searches, which predicted several stable helium-nitrogen compounds in the pressure range from 25 to 100 GPa. In particular, the monoclinic structure of HeN$_{22}$ consists of neutral He atoms, partially ionic dimers N$_{2}$$^{delta-}$, and lantern-like cages N$_{20}$$^{delta+}$. The presence of helium not only greatly enhances structural diversity of nitrogen solids, but also tremendously lowers the formation pressure of nitrogen salt. The unique nitrogen framework of (HeN$_{20}$)$^{delta+}$N$_{2}$$^{delta-}$ may be quenchable to ambient pressure even after removing helium. The estimated energy density of N$_{20}$$^{delta+}$N$_{2}$$^{delta-}$ (10.44 kJ/g) is $sim$2.4 times larger than that of trinitrotoluene (TNT), indicating a very promising high-energy-density material.
The make-up of the outer planets, and many of their moons, are dominated by matter from the H-C-N-O chemical space, commonly assumed to originate from mixtures of hydrogen and the planetary ices H$_2$O, CH$_4$, and NH$_3$. In their interiors, these ices experience extreme pressure conditions, around 5 Mbar at the Neptune mantle-core boundary, and it is expected that they undergo phase transitions, decompose, and form entirely new compounds. In turn, this determines planets interior structure, thermal history, magnetic field generation, etc. Despite its importance, the H-C-N-O space has not been surveyed systematically. Asked simply: at high-pressure conditions, what compounds emerge within this space, and what governs their stability? Here, we report on results from an unbiased crystal structure search amongst H-C-N-O compounds at 5 Mbar to answer this question.
At ambient pressure, sodium, chlorine, and their only known compound NaCl, have well-understood crystal structures and chemical bonding. Sodium is a nearly-free-electron metal with the bcc structure. Chlorine is a molecular crystal, consisting of Cl2 molecules. Sodium chloride, due to the large electronegativity difference between Na and Cl atoms, has highly ionic chemical bonding, with stoichiometry 1:1 dictated by charge balance, and rocksalt (B1-type) crystal structure in accordance with Paulings rules. Up to now, Na-Cl was thought to be an ultimately simple textbook system. Here, we show that under pressure the stability of compounds in the Na-Cl system changes and new materials with different stoichiometries emerge at pressure as low as 25 GPa. In addition to NaCl, our theoretical calculations predict the stability of Na3Cl, Na2Cl, Na3Cl2, NaCl3 and NaCl7 compounds with unusual bonding and electronic properties. The bandgap is closed for the majority of these materials. Guided by these predictions, we have synthesized cubic NaCl3 at 55-60 GPa in the laser-heated diamond anvil cell at temperatures above 2000 K.
Sodium chloride (NaCl), or rocksalt, is well characterized at ambient pressure. Due to the large electronegativity difference between Na and Cl atoms, it has highly ionic chemical bonding, with stoichiometry 1:1 dictated by charge balance, and B1-type crystal structure. Here, by combining theoretical predictions and diamond anvil cell experiments we show that new materials with different stoichiometries emerge at pressure as low as 20 GPa. Compounds such us Na3Cl, Na2Cl, Na3Cl2, NaCl3 and NaCl7 are theoretically stable and have unusual bonding and electronic properties. To test this prediction, at 55-80 GPa we synthesized cubic and orthorhombic NaCl3 at 55-70 GPa and 2D-metallic tetragonal Na3Cl. This proves that novel compounds, violating chemical intuition, can be thermodynamically stable even in simplest systems at non-ambient conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا