Do you want to publish a course? Click here

SPT 0538-50: Physical conditions in the ISM of a strongly lensed dusty star-forming galaxy at z=2.8

141   0   0.0 ( 0 )
 Added by Matt Bothwell
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of SPT-S J053816-5030.8, a gravitationally-lensed dusty star forming galaxy (DSFG) at z = 2.7817, first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538-50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, VLT, ATCA, APEX, and the SMA. We use high resolution imaging from HST to de-blend SPT 0538-50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 +/- 4), we derive the intrinsic properties of SPT 0538-50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and - using molecular line fluxes - the excitation conditions within the ISM. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538-50, similar to local starburst galaxies, and unlike that seen in some other DSFGs at this epoch.



rate research

Read More

We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1-3 arcsec, consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z=5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200 M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, with lens Einstein radii of 1.1-2.0 arcsec and Einstein enclosed masses of 1.6-7.2x10^11 M_sun. These observations confirm the lensing origin of these objects, allow us to measure the their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy (DSFG) to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at $z=6.900 +/- 0.002$. SPT0311-58 was discovered via its 1.4mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an ALMA 3mm frequency scan that detected CO(6-5), CO(7-6) and [CI](2-1), and subsequently confirmed by detections of CO(3-2) with ATCA and [CII] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [CI] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of $M_{rm gas} = 3.3 pm 1.9 times10^{11},M_{odot}$. Its large mass and intense star formation is very rare for a source well into the Epoch of Reionization.
We analyze the physical conditions in the interstellar gas of 11 actively star-forming galaxies at z~2, based on integral-field spectroscopy from the ESO-VLT and HST/NICMOS imaging. We concentrate on the high H-alpha surface brightnesses, large line widths, line ratios and the clumpy nature of these galaxies. We show that photoionization calculations and emission line diagnostics imply gas pressures and densities that are similar to the most intense nearby star-forming regions at z=0 but over much larger scales (10-20 kpc). A relationship between surface brightness and velocity dispersion can be explained through simple energy injection arguments and a scaling set by nearby galaxies with no free parameters. The high velocity dispersions are a natural consequence of intense star formation thus regions of high velocity dispersion are not evidence for mass concentrations such as bulges or rings. External mechanisms like cosmological gas accretion generally do not have enough energy to sustain the high velocity dispersions. In some cases, the high pressures and low gas metallicites may make it difficult to robustly distinguish between AGN ionization cones and star formation, as we show for BzK-15504 at z=2.38. We construct a picture where the early stages of galaxy evolution are driven by self-gravity which powers strong turbulence until the velocity dispersion is high. Then massive, dense, gas-rich clumps collapse, triggering star formation with high efficiencies and intensities as observed. At this stage, the intense star formation is likely self-regulated by the mechanical energy output of massive stars.
We report the detection of a massive neutral gas outflow in the z=2.09 gravitationally lensed Dusty Star-Forming Galaxy HATLASJ085358.9+015537 (G09v1.40), seen in absorption with the OH+(1_1-1_0) transition using spatially resolved (0.5x0.4) Atacama Large Millimeter/submillimeter Array (ALMA) observations. The blueshifted OH+ line is observed simultaneously with the CO(9-8) emission line and underlying dust continuum. These data are complemented by high angular resolution (0.17x0.13) ALMA observations of CH+(1-0) and underlying dust continuum, and Keck 2.2 micron imaging tracing the stellar emission. The neutral outflow, dust, dense molecular gas and stars all show spatial offsets from each other. The total atomic gas mass of the observed outflow is 6.7x10^9 M_sun, >25% as massive as the gas mass of the galaxy. We find that a conical outflow geometry best describes the OH+ kinematics and morphology and derive deprojected outflow properties as functions of possible inclination (0.38 deg-64 deg). The neutral gas mass outflow rate is between 83-25400 M_sun/yr, exceeding the star formation rate (788+/-300 M_sun/yr) if the inclination is >3.6 deg (mass-loading factor = 0.3-4.7). Kinetic energy and momentum fluxes span 4.4-290x10^9 L_sun and 0.1-3.7x10^37 dyne, respectively (energy-loading factor = 0.013-16), indicating that the feedback mechanisms required to drive the outflow depend on the inclination assumed. We derive a gas depletion time between 29 and 1 Myr, but find that the neutral outflow is likely to remain bound to the galaxy, unless the inclination is small, and may be re-accreted if additional feedback processes do not occur.
We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few $10^9$ Msun, in the strongly gravitationally lensed submillimeter galaxy the Emerald (PLCK_G165.7+49.0) at z=2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5 and 21 formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z=0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4-3) line and 850 $mu$m dust emission to characterize the foreground lensing mass distribution, construct a lens model with Lenstool, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a $9 times 10^{10}$ Msun, fragmented disk with 20% gas fraction. One of the clumps shows a pronounced blue wing in the CO(4-3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of -200 km s$^{-1}$ is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا