No Arabic abstract
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy (DSFG) to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at $z=6.900 +/- 0.002$. SPT0311-58 was discovered via its 1.4mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an ALMA 3mm frequency scan that detected CO(6-5), CO(7-6) and [CI](2-1), and subsequently confirmed by detections of CO(3-2) with ATCA and [CII] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [CI] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of $M_{rm gas} = 3.3 pm 1.9 times10^{11},M_{odot}$. Its large mass and intense star formation is very rare for a source well into the Epoch of Reionization.
We present CO(J= 1-0; 3-2; 5-4; 10-9) and 1.2-kpc resolution [CII] line observations of the dusty star-forming galaxy (SFG) HXMM05 -- carried out with the Karl G. Jansky Very Large Array, the Combined Array for Research in Millimeter-wave Astronomy, the Plateau de Bure Interferometer, and the Atacama Large Millimeter/submillimeter Array, measuring an unambiguous redshift of z = 2.9850+/-0.0009. We find that HXMM05 is a hyper-luminous infrared galaxy (LIR=(4+/-1)x10^13 Lsun) with a total molecular gas mass of (2.1+/-0.7)x10^11 (alpha_CO/0.8) Msun. The CO(J=1-0) and [CII] emission are extended over ~9 kpc in diameter, and the CO line FWHM exceeds 1100 km s^-1. The [CII] emission shows a monotonic velocity gradient consistent with a disk, with a maximum rotation velocity of v_c = 616+/-100 km s^-1 and a dynamical mass of (7.7+/-3.1)x10^11 Msun. We find a star formation rate (SFR) of 2900^750_-595 Msun yr^-1. HXMM05 is thus among the most intensely star-forming galaxies known at high redshift. Photo-dissociation region modeling suggests physical conditions similar to nearby SFGs, showing extended star formation, which is consistent with our finding that the gas and dust emission are co-spatial. Its molecular gas excitation resembles the local major merger Arp 220. The broad CO and [CII] lines and a pair of compact dust nuclei suggest the presence of a late-stage major merger at the center of the extended disk, again reminiscent of Arp 220. The observed gas kinematics and conditions together with the presence of a companion and the pair of nuclei suggest that HXMM05 is experiencing multiple mergers as a part of the evolution.
We present a study of six far-infrared fine structure lines in the z=4.225 lensed dusty star-forming galaxy SPT0418-47 to probe the physical conditions of its InterStellar Medium (ISM). In particular, we report Atacama Pathfinder EXperiment (APEX) detections of the [OI]145um and [OIII]88um lines and Atacama Compact Array (ACA) detections of the [NII]122 and 205um lines. The [OI]145um / [CII]158um line ratio is ~5x higher compared to the average of local galaxies. We interpret this as evidence that the ISM is dominated by photo-dissociation regions with high gas densities. The line ratios, and in particular those of [OIII]88um and [NII]122um imply that the ISM in SPT0418-47 is already chemically enriched close to solar metallicity. While the strong gravitational amplification was required to detect these lines with APEX, larger samples can be observed with the Atacama Large Millimeter/submillimeter Array (ALMA), and should allow to determine if the observed dense, solar metallicity ISM is common among these highly star-forming galaxies.
We present a physical characterization of MMJ100026.36+021527.9 (a.k.a. ``MAMBO-9), a dusty star-forming galaxy (DSFG) at $z=5.850pm0.001$. This is the highest redshift unlensed DSFG (and fourth most distant overall) found to-date, and is the first source identified in a new 2mm blank-field map in the COSMOS field. Though identified in prior samples of DSFGs at 850$mu$m-1.2mm with unknown redshift, the detection at 2mm prompted further follow-up as it indicated a much higher probability that the source was likely to sit at $z>4$. Deep observations from the Atacama Large Millimeter and submillimeter Array (ALMA) presented here confirm the redshift through the secure detection of $^{12}$CO($J!=$6$rightarrow$5) and p-H$_{2}$O(2$_{1,1}!rightarrow$2$_{0,2}$). MAMBO-9 is comprised of a pair of galaxies separated by 6kpc with corresponding star-formation rates of 590M$_odot$yr$^{-1}$ and 220M$_odot$yr$^{-1}$ total molecular hydrogen gas mass of (1.7$pm$0.4)$times10^{11}$M$_odot$, dust mass of (1.3$pm$0.3)$times10^{9}$M$_odot$ and stellar mass of (3.2$^{+1.0}_{-1.5}$)$times10^{9}$M$_odot$. The total halo mass, (3.3$pm$0.8)$times10^{12}$M$_odot$, is predicted to exceed $>10^{15}$M$_odot$ by $z=0$. The system is undergoing a merger-driven starburst which will increase the stellar mass of the system tenfold in $tau_{rm depl}=40-80$Myr, converting its large molecular gas reservoir (gas fraction of 96$^{+1}_{-2}$%) into stars. MAMBO-9 evaded firm spectroscopic identification for a decade, following a pattern that has emerged for some of the highest redshift DSFGs found. And yet, the systematic identification of unlensed DSFGs like MAMBO-9 is key to measuring the global contribution of obscured star-formation to the star-formation rate density at $z>4$, the formation of the first massive galaxies, and the formation of interstellar dust at early times ($<$1Gyr).
Since their discovery, submillimetre-selected galaxies (SMGs) have revolutionized the field of galaxy formation and evolution. From the hundreds of square degrees mapped at submillimetre wavelengths, only a handful of sources have been confirmed to lie at z>5 and only two at z>6. All of these SMGs are rare examples of extreme starburst galaxies with star formation rates (SFRs) of >1000 M_sun/yr and therefore are not representative of the general population of dusty star-forming galaxies. Consequently, our understanding of the nature of these sources, at the earliest epochs, is still incomplete. Here we report the spectroscopic identification of a gravitationally amplified (mu = 9.3 +/- 1.0) dusty star-forming galaxy at z=6.027. After correcting for gravitational lensing, we derive an intrinsic less-extreme SFR of 380 +/- 50 M_sun/yr for this source and find that its gas and dust properties are similar to those measured for local Ultra Luminous Infrared Galaxies (ULIRGs), extending the local trends to a poorly explored territory in the early Universe. The star-formation efficiency of this galaxy is similar to those measured in its local analogues, despite a ~12 Gyr difference in cosmic time.
We report the detection of a massive neutral gas outflow in the z=2.09 gravitationally lensed Dusty Star-Forming Galaxy HATLASJ085358.9+015537 (G09v1.40), seen in absorption with the OH+(1_1-1_0) transition using spatially resolved (0.5x0.4) Atacama Large Millimeter/submillimeter Array (ALMA) observations. The blueshifted OH+ line is observed simultaneously with the CO(9-8) emission line and underlying dust continuum. These data are complemented by high angular resolution (0.17x0.13) ALMA observations of CH+(1-0) and underlying dust continuum, and Keck 2.2 micron imaging tracing the stellar emission. The neutral outflow, dust, dense molecular gas and stars all show spatial offsets from each other. The total atomic gas mass of the observed outflow is 6.7x10^9 M_sun, >25% as massive as the gas mass of the galaxy. We find that a conical outflow geometry best describes the OH+ kinematics and morphology and derive deprojected outflow properties as functions of possible inclination (0.38 deg-64 deg). The neutral gas mass outflow rate is between 83-25400 M_sun/yr, exceeding the star formation rate (788+/-300 M_sun/yr) if the inclination is >3.6 deg (mass-loading factor = 0.3-4.7). Kinetic energy and momentum fluxes span 4.4-290x10^9 L_sun and 0.1-3.7x10^37 dyne, respectively (energy-loading factor = 0.013-16), indicating that the feedback mechanisms required to drive the outflow depend on the inclination assumed. We derive a gas depletion time between 29 and 1 Myr, but find that the neutral outflow is likely to remain bound to the galaxy, unless the inclination is small, and may be re-accreted if additional feedback processes do not occur.