Do you want to publish a course? Click here

Quantum speed limit of a photon under non-Markovian dynamics

135   0   0.0 ( 0 )
 Added by Zhenyu Xu
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum speed limit (QSL) under noise has drawn considerable attention in real quantum computational processes and quantum communication. Though non-Markovian noise is proven to be able to accelerate quantum evolution for a damped Jaynes-Cummings model, in this work we show that non-Markovianity may even slow down the quantum evolution of an experimentally controllable photon system. As an important application, QSL time of a photon can be well controlled by regulating the relevant environment parameter properly, which is close to reach the currently available photonic experimental technology.



rate research

Read More

Quantum speed limit (QSL) for open quantum systems in the non-Markovian regime is analyzed. We provide the lower bound for the time required to transform an initial state to a final state in terms of thermodynamic quantities such as the energy fluctuation, entropy production rate and dynamical activity. Such bound was already analyzed for Markovian evolution satisfying detailed balance condition. Here we generalize this approach to deal with arbitrary evolution governed by time-local generator. Our analysis is illustrated by three paradigmatic examples of qubit evolution: amplitude damping, pure dephasing, and the eternally non-Markovian evolution.
We investigate the dynamics of quantum correlations (QC) under the effects of reservoir memory, as a resource for quantum information and computation tasks. Quantum correlations of two-qubit systems are used for implementing quantum teleportation successfully, and for investigating how teleportation fidelity, violation of Bell-CHSH inequality, quantum steering and entanglement are connected with each other under the influence of noisy environments. Both Markovian and non-Markovian channels are considered, and it is shown that the decay and revival of correlations follow the hierarchy of quantum correlations in the state space. Noise tolerance of quantum correlations are checked for different types of unital and non-unital quantum channels, with and without memory. The quantum speed limit time $(tau_{QSL})$ is investigated from the perspective of memory of quantum noise, and the corresponding dynamics is used to analyze the evolution of quantum correlations. We establish the connection between information backflow, quantum speed limit time and dynamics of quantum correlations for non-Markovian quantum channels.
We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lorentzian model, the two-Lorentzian model and band-gap model) are analyzed. First, we note that for the weak coupling regime, the monotonous decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation depends on the non-Markovianity of the environmental models, and is independent of the environmental spectrum density functions.
Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successively on an open quantum system. This pattern is due to the system-environment interaction and contains information about the relaxation rates as well as non-Markovian memory effects. Here we develop a method to extract the information about the unknown environment from a series of projective single-shot measurements on the system (without resorting to the process tomography). The method is based on embedding the non-Markovian system dynamics into a Markovian dynamics of the system and the effective reservoir of finite dimension. The generator of Markovian embedding is learned by the maximum likelihood estimation. We verify the method by comparing its prediction with an exactly solvable non-Markovian dynamics. The developed algorithm to learn unknown quantum environments enables one to efficiently control and manipulate quantum systems.
136 - Bassano Vacchini 2012
We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian process. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical process find their natural quantum counterpart in recently introduced measures of quantum non-Markovianity. This behavior is analyzed in detail for quantum dynamics which can be built taking as input a class of classical processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا