No Arabic abstract
A recent paper [Phys. Rev. E 87, 062114 (2013)] presents numerical simulations on a system exhibiting directed ratchet transport of a driven overdamped Brownian particle subjected to a spatially periodic, symmetric potential. The authors claim that their simulations prove the existence of a universal waveform of the external force which optimally enhances directed transport, hence confirming the validity of a previous conjecture put forward by one of them in the limit of vanishing noise intensity. With minor corrections due to noise, the conjecture holds even in the presence of noise, according to the authors. On the basis of their results the authors claim that all previous theories, which predict a different optimal force waveform, are incorrect. In this comment we provide sufficient numerical evidence showing that there is no such universal force waveform and that the evidence obtained by the authors otherwise is due to a fortunate choice of the parameters. Our simulations also suggest that previous theories correctly predict the shape of the optimal waveform within their validity regime, namely when the forcing is weak. On the contrary, the aforementioned conjecture is shown to be wrong.
We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a non-linear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force.
The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetric wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demonstrate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We have realized a new granular ratchet experiment where both these ratchet effects are observed, as well as the predicted inversion at their crossover. Our discovery paves the way to the realization of micro and sub-micrometer Brownian motors in an equilibrium fluid, based purely upon nano-friction.
Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of hidden entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.
We illustrate the application of Quantum Computing techniques to the investigation of the thermodynamical properties of a simple system, made up of three quantum spins with frustrated pair interactions and affected by a hard sign problem when treated within classical computational schemes. We show how quantum algorithms completely solve the problem, and discuss how this can apply to more complex systems of physical interest, with emphasis on the possible systematics and on their control.
Many systems may switch to an undesired state due to internal failures or external perturbations, of which critical transitions toward degraded ecosystem states are a prominent example. Resilience restoration focuses on the ability of spatially-extended systems and the required time to recover to their desired states under stochastic environmental conditions. While mean-field approaches may guide recovery strategies by indicating the conditions needed to destabilize undesired states, these approaches are not accurately capturing the transition process toward the desired state of spatially-extended systems in stochastic environments. The difficulty is rooted in the lack of mathematical tools to analyze systems with high dimensionality, nonlinearity, and stochastic effects. We bridge this gap by developing new mathematical tools that employ nucleation theory in spatially-embedded systems to advance resilience restoration. We examine our approach on systems following mutualistic dynamics and diffusion models, finding that systems may exhibit single-cluster or multi-cluster phases depending on their sizes and noise strengths, and also construct a new scaling law governing the restoration time for arbitrary system size and noise strength in two-dimensional systems. This approach is not limited to ecosystems and has applications in various dynamical systems, from biology to infrastructural systems.