Do you want to publish a course? Click here

Signature of a topological phase transition in the Josephson supercurrent through a topological insulator

119   0   0.0 ( 0 )
 Added by Pouyan Ghaemi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological insulators (TIs) hold great promise for realizing zero-energy Majorana states in solid-state systems. Recently, several groups reported experimental data suggesting that signatures of Majorana modes in topological insulator Josephson junctions (TIJJs) have -- indeed -- been observed. To verify this claim, one needs to study the topological properties of low-energy Andreev-bound states (ABS) in TIs of which the Majorana modes are a special case. It has been shown theoretically that topologically non-trivial low-energy ABS are also present in TIJJs with doped topological insulators up to some critical level of doping at which the system undergoes a topological phase transition. Here, we present first experimental evidence for this topological transition in the bulk band of a doped TI. Our theoretical calculations, and numerical modeling link abrupt changes in the critical current of top-gated TIJJs to moving the chemical potential in the charge-accumulation region on the surface of the doped TI across a band-inversion point. We demonstrate that the critical-current changes originate from a shift of the spatial location of low-energy ABS from the surface to the boundary between topologically-trivial and band-inverted regions after the transition. The appearance of a decay channel for surface ABS is related to the vanishing of the band effective mass in the bulk and thus exemplifies the topological character of surface ABS as boundary modes. Importantly, the mechanism suggest a means of manipulating Majorana modes in future experiments.



rate research

Read More

A Josephson supercurrent has been induced into the three-dimensional topological insulator Bi1.5Sb0.5Te1.7Se1.3. We show that the transport in Bi1.5Sb0.5Te1.7Se1.3 exfoliated flakes is dominated by surface states and that the bulk conductivity can be neglected at the temperatures where we study the proximity induced superconductivity. We prepared Josephson junctions with widths in the order of 40 nm and lengths in the order of 50 to 80 nm on several Bi1.5Sb0.5Te1.7Se1.3 flakes and measured down to 30 mK. The Fraunhofer patterns unequivocally reveal that the supercurrent is a Josephson supercurrent. The measured critical currents are reproducibly observed on different devices and upon multiple cooldowns, and the critical current dependence on temperature as well as magnetic field can be well explained by diffusive transport models and geometric effects.
Topological superconductivity holds promise for fault-tolerant quantum computing. While planar Josephson junctions are attractive candidates to realize this exotic state, direct phase-measurements as the fingerprint of the topological transition are missing. By embedding two gate-tunable Al/InAs Josephson junctions in a loop geometry, we measure a $pi$-jump in the junction phase with increasing in-plane magnetic field, ${bf B}_|$. This jump is accompanied by a minimum of the critical current, indicating a closing and reopening of the superconducting gap, strongly anisotropic in ${bf B}_|$. Our theory confirms that these signatures of a topological transition are compatible with the emergence of Majorana states.
We report transport measurements on Josephson junctions consisting of Bi2Te3 topological insulator (TI) thin films contacted by superconducting Nb electrodes. For a device with junction length L = 134 nm, the critical supercurrent Ic can be modulated by an electrical gate which tunes the carrier type and density of the TI film. Ic can reach a minimum when the TI is near the charge neutrality regime with the Fermi energy lying close to the Dirac point of the surface state. In the p-type regime the Josephson current can be well described by a short ballistic junction model. In the n-type regime the junction is ballistic at 0.7 K < T < 3.8 K while for T < 0.7 K the diffusive bulk modes emerge and contribute a larger Ic than the ballistic model. We attribute the lack of diffusive bulk modes in the p-type regime to the formation of p-n junctions. Our work provides new clues for search of Majorana zero mode in TI-based superconducting devices.
208 - Juntao Song , Haiwen Liu , Jie Liu 2016
Using non-equilibrium Greens functions, we studied numerically the transport properties of a Josephson junction, superconductor-topological insulator-superconductor hybrid system. Our numerical calculation shows first that proximity-induced superconductivity is indeed observed in the edge states of a topological insulator adjoining two superconducting leads and second that the special characteristics of topological insulators endow the edge states with an enhanced proximity effect with a superconductor but do not forbid the bulk states to do the same. In a size-dependent analysis of the local current, it was found that a few residual bulk states can lead to measurable resistance, whereas because these bulk states spread over the whole sample, their contribution to the interference pattern is insignificant when the sample size is in the micrometer range. Based on these numerical results, it is concluded that the apparent disappearance of residual bulk states in the superconducting interference process as described in Ref. [onlinecite{HartNautrePhys2014f}] is just due to the effects of size: the contribution of the topological edge states outweighs that of the residual bulk states.
Three-dimensional topological insulators (TIs) in proximity with superconductors are expected to exhibit exotic phenomena such as topological superconductivity (TSC) and Majorana bound states (MBS), which may have applications in topological quantum computation. In superconductor-TI-superconductor Josephson junctions, the supercurrent versus the phase difference between the superconductors, referred to as the current-phase relation (CPR), reveals important information including the nature of the superconducting transport. Here, we study the induced superconductivity in gate-tunable Josephson junctions (JJs) made from topological insulator BiSbTeSe2 with superconducting Nb electrodes. We observe highly skewed (non-sinusoidal) CPR in these junctions. The critical current, or the magnitude of the CPR, increases with decreasing temperature down to the lowest accessible temperature (T ~ 20 mK), revealing the existence of low-energy modes in our junctions. The gate dependence shows that close to the Dirac point the CPR becomes less skewed, indicating the transport is more diffusive, most likely due to the presence of electron/hole puddles and charge inhomogeneity. Our experiments provide strong evidence that superconductivity is induced in the highly ballistic topological surface states (TSS) in our gate-tunable TI- based JJs. Furthermore, the measured CPR is in good agreement with the prediction of a model which calculates the phase dependent eigenstate energies in our system, considering the finite width of the electrodes as well as the TSS wave functions extending over the entire circumference of the TI.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا